Abstract

In this study, energy, exergy, and environmental (3E) assessments have been conducted on a proposed combined-cycle power plant (CCPP) with three pressure levels of the HRSG and reheating process. 3E design approaches cross-link mechano-electric and environmental objectives. Herewith, the suggested combined-cycle is formed by a gas unit, condenser, steam turbines, triple-pressure heat recovery steam generator (HRSG) and also utilizes reheat facilities and auxiliary components. It is observed that more than 56% of total exergy destruction occurs in the combustor, followed by HRSG (15.29%), steam turbines (roughly 15.02%), gas turbine (8.93%), air compressor (1.79%), and condenser (0.66%). A parametric study is also presented that examines the sensitivity of performance indicators to various environmental states, steam pressures, pinch points, and steam mass flow rates. Moreover, it is presented that the implementation of Siemens SGT-100-1S over other GT configurations can considerably reduce deficiency of the overall cycle. The effects of each contaminant mass flowrate (NOx, CO, UHC, and CO2) and adiabatic flame temperature (AFT) are also studied when the gas unit operates under partial power and incomplete combustion conditions. In conclusion, a number of potential causes of irreversibilities and corrective optimization guidance are offered for each main equipment of the CCPP.

References

1.
Aliyu
,
M.
,
AlQudaihi
,
A. B.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2020
, “
Energy, Exergy and Parametric Analysis of a Combined Cycle Power Plant
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100450
. 10.1016/j.tsep.2019.100450
2.
Hajabdollahi
,
H.
,
Ahmadi
,
P.
, and
Dincer
,
I.
,
2011
, “
An Exergy-Based Multi-objective Optimization of a Heat Recovery Steam Generator (HRSG) in a Combined Cycle Power Plant (CCPP) Using Evolutionary Algorithm
,”
Int. J. Green Energy
,
8
(
1
), pp.
44
64
. 10.1080/15435075.2010.529779
3.
Kumar
,
R.
,
Feb. 2017
, “
A Critical Review on Energy, Exergy, Exergoeconomic and Economic (4-E) Analysis of Thermal Power Plants
,”
Eng. Sci. Technol. Int. J.
,
20
(
1
), pp.
283
292
. 10.1016/j.jestch.2016.08.018
4.
Aljundi
,
I. H.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Jordan
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
324
328
. 10.1016/j.applthermaleng.2008.02.029
5.
Almutairi
,
A.
,
Pilidis
,
P.
, and
Al-Mutawa
,
N.
,
2015
, “
Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance
,”
Energies
,
8
(
12
), pp.
14118
14135
. 10.3390/en81212418
6.
Tiwari
,
A. K.
,
Hasan
,
M. M.
, and
Islam
,
M.
,
2013
, “
Exergy Analysis of Combined Cycle Power Plant: NTPC Dadri, India
,”
Int. J. Thermodyn.
,
16
(
1
), pp.
36
42
. 10.5541/ijot.443
7.
Khoshkar Vandani
,
A. M.
,
Bidi
,
M.
, and
Ahmadi
,
M. H.
,
2016
, “
Energy, Exergy and Environmental Analyses of a Combined Cycle Power Plant Under Part-Load Conditions
,”
Mech. Ind.
,
17
(
6
),
610
. 10.1051/meca/2016019
8.
Ibrahim
,
T. K.
,
Rahman
,
M. M.
, and
Abdalla
,
A. N.
,
2011
, “
Optimum Gas Turbine Configuration for Improving the Performance of Combined Cycle Power Plant
,”
Procedia Eng.
,
15
, pp.
4216
4223
. 10.1016/j.proeng.2011.08.791
9.
Shi
,
X.
,
Agnew
,
B.
,
Che
,
D.
, and
Gao
,
J.
,
2010
, “
Performance Enhancement of Conventional Combined Cycle Power Plant by Inlet Air Cooling, Inter-Cooling and LNG Cold Energy Utilization
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2003
2010
. 10.1016/j.applthermaleng.2010.05.005
10.
Ersayin
,
E.
, and
Ozgener
,
L.
,
2015
, “
Performance Analysis of Combined Cycle Power Plants: A Case Study
,”
Renewable and Sustainable Energy Rev.
,
43
, pp.
832
842
. 10.1016/j.rser.2014.11.082
11.
Javadi
,
M. A.
,
Hoseinzadeh
,
S.
,
Ghasemiasl
,
R.
,
Heyns
,
P. S.
, and
Chamkha
,
A. J.
,
Jan. 2020
, “
Sensitivity Analysis of Combined Cycle Parameters On Exergy, Economic, and Environmental of a Power Plant
,”
J. Therm. Anal. Calorim.
,
139
(
1
), pp.
519
525
. 10.1007/s10973-019-08399-y
12.
Boyaghchi
,
F. A.
, and
Molaie
,
H.
,
2015
, “
Sensitivity Analysis of Exergy Destruction in a Real Combined Cycle Power Plant Based on Advanced Exergy Method
,”
Energy Convers. Manag.
,
99
, pp.
374
386
. 10.1016/j.enconman.2015.04.048
13.
Babaei Jamnani
,
M.
, and
Kardgar
,
A.
,
2020
, “
Energy-Exergy Performance Assessment With Optimization Guidance for the Components of the 396-MW Combined-Cycle Power Plant
,”
Energy Sci. Eng.
,
8
(
10
), pp.
3561
3574
. 10.1002/ese3.764
14.
Khan
,
M. N.
, and
Tlili
,
I.
,
2018
, “
New Advancement of High Performance for a Combined Cycle Power Plant: Thermodynamic Analysis
,”
Case Stud. Therm. Eng.
,
12
, pp.
166
175
. 10.1016/j.csite.2018.04.001
15.
Param
,
H. K.
, and
Jianu
,
O. A.
,
2020
, “
Exergy Analysis of Heat Recovery Steam Generator: Effects of Supplementary Firing and Desuperheater
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050908
. 10.1115/1.4046084
16.
Naserabad
,
S. N.
,
Mehrpanahi
,
A.
, and
Ahmadi
,
G.
,
2018
, “
Multi-objective Optimization of HRSG Configurations on the Steam Power Plant Repowering Specifications
,”
Energy
,
159
, pp.
277
293
. 10.1016/j.energy.2018.06.130
17.
Kaviri
,
A. G.
,
Jaafar
,
M. N. M.
, and
Lazim
,
T. M.
,
2012
, “
Modeling and Multi-Objective Exergy Based Optimization of a Combined Cycle Power Plant Using a Genetic Algorithm
,”
Energy Convers. Manag.
,
58
, pp.
94
103
. http://dx.doi.org/10.1016/j.enconman.2012.01.002.
18.
Zhu
,
Y.
,
Srisomasundaram
,
R.
, and
Kemp
,
J. W.
,
2010
, “
Energy and Exergy Analysis of Gasifier-Based Coal-to-Fuel Systems
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021008
. 10.1115/1.4001572
19.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011901
. 10.1115/1.4031581
20.
Demirkaya
,
G.
,
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Bula
,
A.
, and
Goswami
,
D. Y.
,
2018
, “
Experimental and Theoretical Analysis of the Goswami Cycle Operating at Low Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072005
. 10.1115/1.4039376
21.
Martinez-Patiño
,
J.
,
Serra
,
L.
,
Verda
,
V.
,
Picón-Núñez
,
M.
, and
Rubio-Maya
,
C.
,
2016
, “
Thermodynamic Analysis of Simultaneous Heat and Mass Transfer Systems
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062006
. 10.1115/1.4034068
22.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Yogi Goswami
,
D.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
. 10.1115/1.4006434
23.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
. 10.1115/1.4023098
24.
Senturk Acar
,
M.
, and
Arslan
,
O.
,
2019
, “
Energy and Exergy Analysis of Solar Energy-Integrated, Geothermal Energy-Powered Organic Rankine Cycle
,”
J. Therm. Anal. Calorim.
,
137
(
2
), pp.
659
666
. 10.1007/s10973-018-7977-1
25.
Marty
,
F.
,
Serra
,
S.
,
Sochard
,
S.
, and
Reneaume
,
J. M.
,
2019
, “
Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant
,”
Energies
,
12
(
6
),
1175
. 10.3390/en12061175
26.
Gholamalizadeh
,
E.
,
Hosseini
,
E.
,
Babaei Jamnani
,
M.
,
Amiri
,
A.
,
Dehghan saee
,
A.
, and
Alimoradi
,
A.
,
2019
, “
Study of Intensification of the Heat Transfer in Helically Coiled Tube Heat Exchangers via Coiled Wire Inserts
,”
Int. J. Therm. Sci.
,
141
, pp.
72
83
. 10.1016/j.ijthermalsci.2019.03.029
27.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
. 10.1115/1.4041093
28.
Adibhatla
,
S.
, and
Kaushik
,
S. C.
,
2017
, “
Energy, Exergy and Economic (3E) Analysis of Integrated Solar Direct Steam Generation Combined Cycle Power Plant
,”
Sustainable Energy Technol. Assess.
,
20
, pp.
88
97
. 10.1016/j.seta.2017.01.002
29.
Yamankaradeniz
,
N.
,
Bademlioglu
,
A. H.
, and
Kaynakli
,
O.
,
2018
, “
Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach
,”
ASME J. Sol. Energy Eng.
,
140
(
10
), p.
102001
. 10.1115/1.4040108
30.
Ozgener
,
L.
,
Hepbasli
,
A.
, and
Dincer
,
I.
,
2004
, “
Thermo-mechanical Exergy Analysis of Balcova Geothermal District Heating System in Izmir, Turkey
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
293
301
. 10.1115/1.1805540
31.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
. 10.1115/1.3120381
32.
Akbari Vakilabadi
,
M.
,
Bidi
,
M.
, and
Najafi
,
A. F.
,
2018
, “
Energy, Exergy Analysis and Optimization of Solar Thermal Power Plant With Adding Heat and Water Recovery System
,”
Energy Convers. Manag.
,
171
, pp.
1639
1650
. 10.1016/j.enconman.2018.06.094
33.
Kotas
,
T. J.
,
1985
, “Examples of Thermal and Chemical Plant Analysis,”
The Exergy Method of Thermal Plant Analysis
, Elsevier, pp.
162
196
.
34.
Base
,
N.
,
1999
,
Thermodynamic Optimization of Complex Energy Systems
,
NATO Science Series, Springer Netherlands.
. 10.1007/978-94-011-4685-2
35.
Melek
,
Y.
, and
Aytun
,
O. U.
,
2007
, “
An Energy Benchmarking Model Based on Artificial Neural Network Method Utilizing US Commercial Buildings Energy Consumption Survey (CBECS) Database
,”
Int. J. energy Res.
,
31
, pp.
135
147
. 10.1002/er.1232
36.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “Exergy: Energy, Environment, and Sustainable Development,”
Exergy
, 2nd ed.,
Elsevier
,
New York
, pp.
1
547
.
37.
Speight
,
J. G.
,
2011
, “Sources of Hydrocarbons,”
Handbook of Industrial Hydrocarbon Processes
,
Elsevier
, pp.
43
83
.
38.
Rosen
,
M. A.
, and
Bulucea
,
C. A.
,
2009
, “
Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies
,”
Entropy
,
11
(
4
), pp.
820
835
. 10.3390/e11040820
39.
Rivero
,
R.
, and
Garfias
,
M.
,
2006
, “
Standard Chemical Exergy of Elements Updated
,”
Energy
,
31
(
15
), pp.
3310
3326
. 10.1016/j.energy.2006.03.020
40.
Abam
,
F. I.
,
Ugot
,
I. U.
, and
Igbong
,
D. I.
,
2011
, “
Thermodynamic Assessment of Grid-Based Gas Turbine Power Plants in Nigeria
,”
J. Emerging Trends Eng. Appl. Sci.
,
2
(
6
), pp.
1026
1033
.
41.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1993
, “
Semianalytical Correlations for NOx, CO, and UHC Emissions
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
612
619
. http://dx.doi.org/ 10.1115/1.2906750
42.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Ahmadi
,
P.
,
2017
,
Optimization of Energy Systems
, Vol.
53
, no.
9
,
John Wiley & Sons, Ltd
,
Chichester, UK
.
43.
Zheng
,
L.
,
2011
,
Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture
, 1st ed.,
Woodhead Publishing
, Elsevier.
You do not currently have access to this content.