Abstract

The thermal degradation characteristics of eucalyptus, pearl millet cob, and corncob were investigated using the nonisothermal thermogravimetric method. This investigation was performed to carry out the thermochemical conversion for obtaining syngas. Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses were carried out to understand thermal devolatilization behavior and estimation of various thermophysical properties of the biomasses. The degradation behavior was analyzed in the light of lignocellulosic composition that was found to have a definitive influence on degradation outcomes. The TG analysis has been utilized to obtain the proximate analysis of biomass. Activation energy using the Flynn-Wall-Ozawa method has been estimated and found to be 201, 150, and 68 kJ/mol for eucalyptus, pearl millet cob, and corncob, respectively. The TG analysis and activation energy together indicated that corncob is easiest for thermochemical conversion among the three biomasses. The TG curve also confirms the same.

References

1.
Abas
,
N.
,
Kalair
,
A.
, and
Khan
,
N.
,
2015
, “
Review of Fossil Fuels and Future Energy Technologies
,”
Futures
,
69
, pp.
31
49
.
2.
Deng
,
S.
,
Lu
,
X.
,
Tan
,
H.
,
Wang
,
X.
, and
Xiong
,
X.
,
2020
, “
Effects of a Combination of Biomass Addition and Atmosphere on Combustion Characteristics and Kinetics of Oily Sludge
,”
Biomass Convers. Biorefinery
,
11
(
2
), pp.
1
15
.
3.
Pasangulapati
,
V.
,
Ramachandriya
,
K. D.
,
Kumar
,
A.
,
Wilkins
,
M. R.
,
Jones
,
C. L.
, and
Huhnke
,
R. L.
,
2012
, “
Effects of Cellulose, Hemicellulose and Lignin on Thermochemical Conversion Characteristics of the Selected Biomass
,”
Bioresour. Technol.
,
114
, pp.
663
669
.
4.
Canabarro
,
N.
,
Soares
,
J. F.
,
Anchieta
,
C. G.
,
Kelling
,
C. S.
, and
Mazutti
,
M. A.
,
2013
, “
Thermochemical Processes for Biofuels Production From Biomass
,”
Sustain. Chem. Process.
,
1
(
1
), p.
22
.
5.
Wang
,
Z.
,
Burra
,
K. G.
,
Li
,
X.
,
Zhang
,
M.
,
He
,
X.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
CO2-Assisted Gasification of Polyethylene Terephthalate With Focus on Syngas Evolution and Solid Yield
,”
Appl. Energy
,
276
, pp.
115508
.
6.
Jayaraman
,
K.
,
Gokalp
,
I.
, and
Bostyn
,
S.
,
2015
, “
High Ash Coal Pyrolysis at Different Heating Rates to Analyze Its Char Structure, Kinetics and Evolved Species
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
426
433
.
7.
Weiland
,
N. T.
,
Means
,
N. C.
, and
Morreale
,
B. D.
,
2012
, “
Product Distributions From Isothermal Co-Pyrolysis of Coal and Biomass
,”
Fuel
,
94
, pp.
563
570
.
8.
Lei
,
K.
,
Zhang
,
R.
,
Ye
,
B.
,
Cao
,
J.
, and
Liu
,
D.
,
2020
, “
Combustion of Single Particles From Sewage Sludge/Pine Sawdust and Sewage Sludge/Bituminous Coal Under Oxy-Fuel Conditions With Steam Addition
,”
Waste Manag.
,
101
, pp.
1
8
.
9.
Zhao
,
J.
,
Wang
,
S.
,
Zhang
,
R.
,
Wu
,
Z.
,
Meng
,
H.
, and
Chen
,
L.
,
2020
, “
Thermal Behavior and Kinetic Analysis of co-Combustion of Wheat Straw and Polyvinyl Chloride Under Different Oxygen Concentrations Through Thermogravimetry
,”
Proc. Inst. Mech. Eng., Part A
, p.
095765092094299
.
10.
Mani
,
T.
,
Murugan
,
P.
,
Abedi
,
J.
, and
Mahinpey
,
N.
,
2010
, “
Pyrolysis of Wheat Straw in a Thermogravimetric Analyzer: Effect of Particle Size and Heating Rate on Devolatilization and Estimation of Global Kinetics
,”
Chem. Eng. Res. Des.
,
88
(
8
), pp.
952
958
.
11.
Barzegar
,
R.
,
Yozgatligil
,
A.
,
Olgun
,
H.
, and
Atimtay
,
A. T.
,
2020
, “
TGA and Kinetic Study of Different Torrefaction Conditions of Wood Biomass Under Air and Oxy-Fuel Combustion Atmospheres
,”
J. Energy Inst.
,
93
(
3
), pp.
889
898
.
12.
Merkel
,
K.
,
Rydarowski
,
H.
,
Kazimierczak
,
J.
, and
Bloda
,
A.
,
2014
, “
Processing and Characterization of Reinforced Polyethylene Composites Made With Lignocellulosic Fibres Isolated From Waste Plant Biomass Such as Hemp
,”
Composites, Part B
,
67
, pp.
138
144
.
13.
Slopiecka
,
K.
,
Bartocci
,
P.
, and
Fantozzi
,
F.
,
2012
, “
Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis
,”
Appl. Energy
,
97
, pp.
491
497
.
14.
Ren
,
S.
,
Lei
,
H.
,
Wang
,
L.
,
Bu
,
Q.
,
Chen
,
S.
, and
Wu
,
J.
,
2013
, “
Thermal Behaviour and Kinetic Study for Woody Biomass Torrefaction and Torrefied Biomass Pyrolysis by TGA
,”
Biosyst. Eng.
,
116
(
4
), pp.
420
426
.
15.
Grønli
,
M. G.
,
Várhegyi
,
G.
, and
Di Blasi
,
C.
,
2002
, “
Thermogravimetric Analysis and Devolatilization Kinetics of Wood
,”
Ind. Eng. Chem. Res.
,
41
(
17
), pp.
4201
4208
.
16.
Tenorio
,
C.
, and
Moya
,
R.
,
2013
, “
Thermogravimetric Characteristics, Its Relation With Extractives and Chemical Properties and Combustion Characteristics of Ten Fast-Growth Species in Costa Rica
,”
Thermochim. Acta
,
563
, pp.
12
21
.
17.
Gašparovič
,
L.
,
Koreňová
,
Z.
, and
Jelemenský
,
Ľ
,
2010
, “
Kinetic Study of Wood Chips Decomposition by TGA
,”
Chem. Pap.
,
64
(
2
), pp.
174
181
.
18.
Mutanda
,
T.
,
Ramesh
,
D.
,
Karthikeyan
,
S.
,
Kumari
,
S.
,
Anandraj
,
A.
, and
Bux
,
F.
,
2011
, “
Bioprospecting for Hyper-Lipid Producing Microalgal Strains for Sustainable Biofuel Production
,”
Bioresour. Technol.
,
102
(
1
), pp.
57
70
.
19.
Dussán
,
K. J.
,
Silva
,
D. D.
,
Moraes
,
E. J.
,
Arruda
,
P. V.
, and
Felipe
,
M. G.
,
2014
, “
Dilute-Acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse
,”
Chem. Eng. Trans.
,
38
.
20.
Kong
,
W.
,
Dai
,
Q.
,
Gao
,
C.
,
Ren
,
J.
,
Liu
,
C.
, and
Sun
,
R.
,
2018
,
Hemicellulose-Based Hydrogels and Their Potential Application
,
Springer
,
Singapore
, pp.
87
127
.
21.
Lippe
,
M.
,
Lewandowski
,
I.
,
Unseld
,
R.
,
Pucher
,
J.
, and
Bräutigam
,
K. R.
,
2020
, “The Origin of Biomass,”
Bioeconomy for Beginners
,
J.
Pietzsch
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
11
66
.
22.
Gottipati
,
R.
, and
Mishra
,
S.
,
2011
, “
A Kinetic Study on Pyrolysis and Combustion Characteristics of Oil Cakes: Effect of Cellulose and Lignin Content
,”
J. Fuel Chem. Technol.
,
39
(
4
), pp.
265
270
.
23.
Kim
,
J. H.
,
Jung
,
S.
,
Lin
,
K. Y. A.
,
Rinklebe
,
J.
, and
Kwon
,
E. E.
,
2021
, “
Comparative Study on Carbon Dioxide-Cofed Catalytic Pyrolysis of Grass and Woody Biomass
,”
Bioresour. Technol.
,
323
, p.
124633
.
24.
Oo
,
H. M.
,
Karin
,
P.
,
Chollacoop
,
N.
, and
Hanamura
,
K.
,
2021
, “
Physicochemical Characterization of Forest and Sugarcane Leaf Combustion’s Particulate Matters Using Electron Microscopy, EDS, XRD and TGA
,”
J. Environ. Sci.
,
99
, pp.
296
310
.
25.
Wahab
,
A.
,
Sattar
,
H.
,
Ashraf
,
A.
,
Hussain
,
S. N.
,
Saleem
,
M.
, and
Munir
,
S.
,
2020
, “
Thermochemical, Kinetic and Ash Characteristics Behaviour of Thar Lignite, Agricultural Residues and Synthetic Polymer Waste (EVA)
,”
Fuel
,
266
, p.
117151
.
26.
Tranvan
,
L.
,
Legrand
,
V.
, and
Jacquemin
,
F.
,
2014
, “
Thermal Decomposition Kinetics of Balsa Wood: Kinetics and Degradation Mechanisms Comparison Between Dry and Moisturized Materials
,”
Polym. Degrad. Stab.
,
110
, pp.
208
215
.
27.
Zhou
,
L.
,
Zhang
,
G.
,
Reinmöller
,
M.
, and
Meyer
,
B.
,
2019
, “
Effect of Inherent Mineral Matter on the Co-Pyrolysis of Highly Reactive Brown Coal and Wheat Straw
,”
Fuel
,
239
, pp.
1194
1203
.
28.
Chen
,
D.
,
Gao
,
D.
,
Capareda
,
S. C.
,
Jia
,
S. E. F.
, and
Wang
,
Y.
,
2020
, “
Influences of Hydrochloric Acid Washing on the Thermal Decomposition Behavior and Thermodynamic Parameters of Sweet Sorghum Stalk
,”
Renew. Energy
,
148
, pp.
1244
1255
.
29.
Kumar
,
M.
,
Mishra
,
P. K.
, and
Upadhyay
,
S. N.
,
2020
, “
Thermal Degradation of Rice Husk: Effect of Pre-Treatment on Kinetic and Thermodynamic Parameters
,”
Fuel
,
268
, p.
117164
.
30.
Antal
,
M. J.
, and
Varhegyi
,
G.
,
1995
, “
Cellulose Pyrolysis Kinetic: The Current State of Knowledge
,”
Ind. Eng. Chem. Res.
,
34
(
3
), pp.
703
717
.
31.
El-Sayed
,
S. A.
, and
Mostafa
,
M. E.
,
2014
, “
Pyrolysis Characteristics and Kinetic Parameters Determination of Biomass Fuel Powders by Differential Thermal Gravimetric Analysis (TGA/DTG)
,”
Energy Convers. Manag.
,
85
, pp.
165
172
.
32.
Reed
,
A. R.
, and
Williams
,
P. T.
,
2004
, “
Thermal Processing of Biomass Natural Fibre Wastes by Pyrolysis
,”
Int. J. Energy Res.
,
28
(
2
), pp.
131
145
.
33.
White
,
J. E.
,
Catallo
,
W. J.
, and
Legendre
,
B. L.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant Agricultural Residue Case Studies
,”
J. Anal. Appl. Pyrolysis
,
91
(
1
), pp.
1
33
.
34.
Velázquez-Martí
,
B.
,
Gaibor-Chávez
,
J.
,
Niño-Ruiz
,
Z.
, and
Cortés-Rojas
,
E.
,
2018
, “
Development of Biomass Fast Proximate Analysis by Thermogravimetric Scale
,”
Renew. Energy
,
126
, pp.
954
959
.
35.
Ferrara
,
F.
,
Orsini
,
A.
,
Plaisant
,
A.
, and
Pettinau
,
A.
,
2014
, “
Pyrolysis of Coal, Biomass and Their Blends: Performance Assessment by Thermogravimetric Analysis
,”
Bioresour. Technol.
,
171
, pp.
433
441
.
36.
Skreiberg
,
A.
,
Skreiberg
,
O.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2011
, “
TGA and Macro-TGA Characterisation of Biomass Fuels and Fuel Mixtures
,”
Fuel
,
90
(
6
), pp.
2182
2197
.
37.
Burhenne
,
L.
,
Messmer
,
J.
,
Aicher
,
T.
, and
Laborie
,
M. P.
,
2013
, “
The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed bed Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
101
, pp.
177
184
.
38.
Pang
,
L.
,
Shao
,
Y.
,
Zhong
,
W.
, and
Liu
,
H.
,
2018
, “
Experimental Investigation on the Coal Combustion in a Pressurized Fluidized bed
,”
Energy
,
165
, pp.
1119
1128
.
39.
Jayaraman
,
K.
,
Kok
,
M. V.
, and
Gokalp
,
I.
,
2017
, “
Pyrolysis, Combustion and Gasification Studies of Different Sized Coal Particles Using TGA-MS
,”
Appl. Therm. Eng.
,
125
, pp.
1446
1455
.
40.
Cruz
,
G.
, and
Crnkovic
,
P. M.
,
2016
, “
Investigation Into the Kinetic Behavior of Biomass Combustion Under N2/O2 and CO2/O2 Atmospheres
,”
J. Therm. Anal. Calorim.
,
123
(
2
), pp.
1003
1011
.
41.
Karakoti
,
A.
,
Aseer
,
J. R.
,
Dasan
,
P. K.
, and
Rajesh
,
M.
,
2020
, “
Micro Cellulose Grewia Optiva Fiber-Reinforced Polymer Composites: Relationship Between Structural and Mechanical Properties
,”
J. Nat. Fibers
, pp.
1
12
.
42.
Zhang
,
J.
,
Zhang
,
X.
,
Li
,
C.
,
Zhang
,
W.
,
Zhang
,
J.
,
Zhang
,
R.
,
Yuan
,
Q.
,
Liu
,
G.
, and
Cheng
,
G.
,
2015
, “
A Comparative Study of Enzymatic Hydrolysis and Thermal Degradation of Corn Stover: Understanding Biomass Pretreatment
,”
RSC Adv.
,
5
(
46
), pp.
36999
37005
.
You do not currently have access to this content.