Abstract

The oxygen-depleted environment in the recompression stroke can convert gasoline fuel into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reactions. These reformate species can influence the combustion characteristics of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, the combustion phenomena are investigated using a single-cylinder research engine under a medium load. The main combustion phases are experimentally advanced by direct fuel injection into the negative valve overlap (NVO) compared with that of intake stroke under single/double-pulse injections. NVO peak in-cylinder pressures are lower than that of motoring due to the limited O2 concentration, emphasizing that endothermic reactions occur during the overlap. This phenomenon limits the oxidation reactions, and the thermal effect is not pronounced. The zero-dimensional chemical kinetics results present the same increasing tendencies of classical reformed species of rich mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. Predicted ignition delays are shortened due to the additions of these reformed species. The influences of the reformates on the main combustion are confirmed by three-dimensional computational fluid dynamics (CFD) calculations, and the results show that OH radicals are advanced under NVO injections relative to intake stroke injections. Consequently, earlier heat release and cylinder pressure are noticeable. Parametric studies on the effects of injection pressure, double-pulse injection, and equivalence ratio on the combustion and emissions are also discussed experimentally.

References

1.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Flowers
,
D.
,
Smith
,
J. R.
, and
Dibble
,
R.
,
2002
, “
Thermal Charge Conditioning for Optimal HCCI Engine Operation
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
67
75
. 10.1115/1.1447928
2.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
. 10.1115/1.4027897
3.
Urushihara
,
T.
,
Hiraya
,
K.
,
Kakuhou
,
A.
, and
Itoh
,
T.
,
2003
, “
Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation
,”
SAE Technical Paper 2003-01-0749
.
4.
Li
,
H.
,
Neill
,
W. S.
, and
Chippior
,
W. L.
,
2012
, “
An Experimental Investigation of HCCI Combustion Stability Using n-Heptane
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022204
. 10.1115/1.4005700
5.
Yang
,
J.
,
Culp
,
T.
, and
Kenney
,
T.
,
2002
, “
Development of a Gasoline Engine System Using HCCI Technology—The Concept and the Test Results
,”
SAE Technical Paper 2002-01-2832
.
6.
Mamalis
,
S.
,
Babajimopoulos
,
A.
,
Guralp
,
O.
, and
Najt
,
P.
,
2012
, “
Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI—A Modeling Study
,”
SAE Technical Paper 2012-01-1101
.
7.
Szybist
,
J.
,
Edwards
,
K.
,
Foster
,
M.
,
Confer
,
K.
, and
Moore
,
W.
,
2013
, “
Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached
,”
SAE Int. J. Engines
,
6
(
1
), pp.
553
568
. 10.4271/2013-01-1665
8.
Szybist
,
J.
,
Steeper
,
R.
,
Splitter
,
D.
,
Kalaskar
,
V.
,
Pihl
,
J.
, and
Daw
,
C.
,
2014
, “
Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments
,”
SAE Int. J. Engines
,
7
(
1
), pp.
418
433
. 10.4271/2014-01-1188
9.
Ratnak
,
S.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Nakama
,
K.
,
2018
, “
Effect of Fuel Injection Timing During Negative Valve Overlap Period on a GDI-HCCI Engine
,”
Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference. Volume 1: Large Bore Engines; Fuels; Advanced Combustion
,
San Diego, CA
,
Nov. 4–7
, p.
V001T03A020
.
10.
Borgqvist
,
P.
,
Tunestal
,
P.
, and
Johansson
,
B.
, “
Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions
,”
SAE Int. J. Engines
,
6
(
1
), pp.
366
378
. 10.4271/2013-01-0902
11.
Badra
,
J. A.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H. G.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052202
. 10.1115/1.4032622
12.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
. 10.1115/1.4039548
13.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2010
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Eng. Res.
,
12
(
3
), pp.
209
226
. 10.1177/1468087411401548
14.
Fang
,
W.
,
Fang
,
J.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2015
, “
An Experimental Investigation of Reactivity-Controlled Compression Ignition Combustion in a Single-Cylinder Diesel Engine Using Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
031101
. 10.1115/1.4028771
15.
Ratnak
,
S.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Nakama
,
K.
,
2016
, “
Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement
,”
SAE Int. J. Engines
,
9
(
1
), pp.
379
396
.
16.
Sok
,
R.
,
Yamaguchi
,
K.
, and
Kusaka
,
J.
,
2021
, “
Prediction of Ultra-Lean Spark Ignition Engine Performances by Quasi-Dimensional Combustion Model With a Refined Laminar Flame Speed Correlation
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032306
. 10.1115/1.4049127
17.
Ekoto
,
I.
,
Peterson
,
B.
,
Szybist
,
J.
, and
Northrop
,
W.
,
2015
, “
Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for low-Temperature Gasoline Combustion
,”
SAE Int. J. Engines
,
8
(
5
), pp.
2227
2239
. 10.4271/2015-24-2451
18.
Arning
,
J.
,
Ramsander
,
T.
, and
Collings
,
N.
,
2010
, “
Analysis of In-Cylinder Hydrocarbons in a Multi-Cylinder Gasoline HCCI Engine Using Gas Chromatography
,”
SAE Int. J. Engines
,
2
(
2
), pp.
141
149
. 10.4271/2009-01-2698
19.
Fitzgerald
,
R.
, and
Steeper
,
R.
,
2010
, “
Thermal and Chemical Effects of NVO Fuel Injection on HCCI Combustion
,”
SAE Int. J. Engines
,
3
(
1
), pp.
46
64
. 10.4271/2010-01-0164
20.
Peterson
,
B.
,
Ekoto
,
I.
, and
Northrop
,
W.
,
2015
, “
Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling
,”
SAE Int. J. Engines
,
8
(
2
), pp.
747
757
. 10.4271/2015-01-0818
21.
Manofsky
,
L.
,
Vavra
,
J.
,
Assanis
,
D.
, and
Babajimopoulos
,
A.
,
2011
, “
Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition
,”
SAE Technical Paper 2011-01-1179
.
22.
Alger
,
T.
, and
Mangold
,
B.
,
2009
, “
Dedicated EGR: A New Concept in High Efficiency Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
620
631
. 10.4271/2009-01-0694
23.
Fogla
,
N.
,
Bybee
,
M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Wahiduzzaman
,
S.
, “
Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence
,”
SAE Int. J. Engines
,
10
(
2
), pp.
562
575
. 10.4271/2017-01-0542
24.
Lutz
,
A.
,
Kee
,
R.
, and
Miller
,
J.
,
1996
, “
SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
”,
Sandia National Lab
.,
Livermore, CA
.
25.
ANSYS, Inc.
,
2018
,
Forte Theory Manual, Release 19.0, Pennsylvania
.
26.
Huang
,
C.
,
Golovitchev
,
V.
, and
Lipatnikov
,
A.
,
2010
, “
Chemical Model of Gasoline-Ethanol Blends for Internal Combustion Engine Applications
,”
SAE Technical Paper 2010-01-0543
. 10.4271/2010-01-0543
27.
Curran
,
H. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Callahan
,
G. V.
, and
Dryer
,
F. L.
,
1998
, “
Oxidation of Automotive Primary Reference Fuels at Elevated Pressures
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
379
387
. 10.1016/S0082-0784(98)80426-8
28.
Miyoshi
,
A.
,
2015
, http://akrmys.com/KUCRS/distrib.htm.en, Acessed August 11.
29.
Kong
,
S.
, and
Reitz
,
R. D.
,
2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
702
707
. 10.1115/1.1413766
30.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill
,
New York
.
31.
Sok
,
R.
,
2015
, “
A Study on a Lean-Boost Gasoline Engine Under SI and HCCI Combustion Modes
,”
Waseda University Repository Doctoral thesis
,
Waseda University
,
Tokyo, Japan
.
32.
Kaminaga
,
T.
,
Yamaguchi
,
K.
,
Ratnak
,
S.
,
Kusaka
,
J.
,
Youso
,
T.
,
Fujikawa
,
T.
, and
Yamakawa
,
M.
,
2019
, “
A Study on Combustion Characteristics of a High Compression Ratio SI Engine With High Pressure Gasoline Injection
,”
SAE Technical Paper 2019-24-0106
. 10.4271/2019-24-0106
33.
Warnatz
,
J.
,
Mass
,
U.
, and
Dibble
,
R. W.
,
2006
,
Combustion-Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
, 2nd ed.,
Springer
,
New York
, pp.
230
231
.
You do not currently have access to this content.