Abstract

Biochar produced from slow pyrolysis of cocoa shells was studied as a sorbent for CO2 capture. Three cocoa shell samples obtained from Papua New Guinea, Peru, and Colombia were studied. Thermogravimetric analysis showed that the first three stages of degradation were quite similar for different cocoa shell sources. However, the fourth stage was different, which could be due to the different lignin content in the cocoa shell sources. Chemical analysis showed that the cocoa shell biochar had a lower content of carbon and oxygen, and a higher content of magnesium, potassium, and calcium compared with the cocoa shell. CO2 uptake performance of the cocoa shell biochar was examined and compared with a commercial activated carbon using a thermogravimeter at atmospheric pressure and ambient temperature. The final CO2 uptake after 30 min was slightly higher for cocoa shell biochar. However, activated carbon had a faster adsorption response, and it approached equilibrium faster than the cocoa shell biochar. This could be due to differences in particle size, pore structure, and surface area of the activated carbon which allows the CO2 to be adsorbed easily in its porous structure. A pseudo-second-order model of kinetics fits the CO2 adsorption behavior of cocoa shell biochar and activated carbon indicating that the rate-limiting step is chemical adsorption. Furthermore, the stability of the cocoa shell sorbent was confirmed over four adsorption/desorption cycles. By considering the simplicity of the production process and efficiency of CO2 adsorption, cocoa shell biochar can be considered a good option for CO2 capture.

References

1.
Song
,
C.
,
Liu
,
Q.
,
Qi
,
Y.
,
Chen
,
G.
,
Song
,
Y.
,
Kansha
,
Y.
, and
Kitamura
,
Y.
,
2019
, “
Absorption-microalgae Hybrid CO2 Capture and Biotransformation Strategy—A Review
,”
Int. J. Greenh. Gas Control
,
88
, pp.
109
117
. 10.1016/j.ijggc.2019.06.002
2.
Rouzitalab
,
Z.
,
Maklavany
,
D. M.
,
Jafarinejad
,
S.
, and
Rashidi
,
A.
,
2020
, “
Lignocellulose-Based Adsorbents: A Spotlight Review of the Effective Parameters on Carbon Dioxide Capture Process
,”
Chemosphere
,
246
, p.
125756
. 10.1016/j.chemosphere.2019.125756
3.
International Energy Agency (IEA) CO2 Emissions From Fuel Combustion Highlights
”,
2018
.
4.
Wei
,
M.
,
Yu
,
Q.
,
Duan
,
W.
,
Zuo
,
Z.
,
Hou
,
L.
, and
Dai
,
J.
,
2018
, “
CO2 Adsorption and Desorption Performance of Waste Ion-Exchange Resin-Based Activated Carbon
,”
Environ. Prog. Sustain. Energy
,
37
(
2
), pp.
703
711
. 10.1002/ep.12743
5.
Cao
,
S.
,
Zhao
,
H.
,
Hu
,
D.
,
Wang
,
J.-A.
,
Li
,
M.
,
Zhou
,
Z.
,
Shen
,
Q.
,
Sun
,
N.
, and
Wei
,
W.
,
2019
, “
Preparation of Potassium Intercalated Carbons by in-Situ Activation and Speciation for CO2 Capture From Flue Gas
,”
J. CO2 Util.
,
35
, pp.
59
66
. 10.1016/j.jcou.2019.09.001
6.
Li
,
D.
,
Zhou
,
J.
,
Wang
,
Y.
,
Tian
,
Y.
,
Wei
,
L.
,
Zhang
,
Z.
,
Qiao
,
Y.
, and
Li
,
J.
,
2019
, “
Effects of Activation Temperature on Densities and Volumetric CO2 Adsorption Performance of Alkali-Activated Carbons
,”
Fuel
,
238
, pp.
232
239
. 10.1016/j.fuel.2018.10.122
7.
Dindi
,
A.
,
Viet Quang
,
D.
, and
Abu-Zahra
,
M. R. M.
,
2019
, “
CO2 Adsorption Testing on Fly Ash Derived Cancrinite-Type Zeolite and Its Amine-Functionalized Derivatives
,”
Environ. Prog. Sustain. Energy
,
38
(
1
), pp.
77
88
. 10.1002/ep.12940
8.
Díaz
,
E.
,
Muñoz
,
E.
,
Vega
,
A.
, and
Ordóñez
,
S.
,
2008
, “
Enhancement of the CO2 Retention Capacity of X Zeolites by Na- and Cs-Treatments
,”
Chemosphere
,
70
(
8
), pp.
1375
1382
. 10.1016/j.chemosphere.2007.09.034
9.
Tian
,
M.
,
Buchard
,
A.
,
Wells
,
S. A.
,
Fang
,
Y.
,
Torrente-Murciano
,
L.
,
Nearchou
,
A.
,
Dong
,
Z.
,
White
,
T. J.
,
Sartbaeva
,
A.
, and
Ting
,
V. P.
,
2018
, “
Mechanism of CO2 Capture in Nanostructured Sodium Amide Encapsulated in Porous Silica
,”
Surf. Coat. Technol.
,
350
, pp.
227
233
. 10.1016/j.surfcoat.2018.06.049
10.
Liu
,
S.-H.
, and
Kuok
,
C.-H.
,
2018
, “
Preparation of Stable Tetraethylenepentamine-Modified Ordered Mesoporous Silica Sorbents by Recycling Natural Equisetum Ramosissimum
,”
Chemosphere
,
191
, pp.
566
572
. 10.1016/j.chemosphere.2017.10.088
11.
Sunyoto
,
N. M. S.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhang
,
D.
,
2018
, “
Effect of Biochar Addition and Temperature on Hydrogen Production From the First Phase of Two-Phase Anaerobic Digestion of Carbohydrates Food Waste
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062204
. 10.1115/1.4039318
12.
Manyà
,
J. J.
,
2012
, “
Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs
,”
Environ. Sci. Technol.
,
46
(
15
), pp.
7939
7954
. 10.1021/es301029g
13.
Gao
,
X.
,
Zhang
,
Y.
,
Li
,
B.
,
Xie
,
G.
, and
Zhao
,
W.
,
2018
, “
Experimental Investigation Into the Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
044501
. 10.1115/1.4039603
14.
Creamer
,
A. E.
,
Gao
,
B.
, and
Zhang
,
M.
,
2014
, “
Carbon Dioxide Capture Using Biochar Produced From Sugarcane Bagasse and Hickory Wood
,”
Chem. Eng. J.
,
249
, pp.
174
179
. 10.1016/j.cej.2014.03.105
15.
Huang
,
Y.-F.
,
Chiueh
,
P.-T.
,
Shih
,
C.-H.
,
Lo
,
S.-L.
,
Sun
,
L.
,
Zhong
,
Y.
, and
Qiu
,
C.
,
2015
, “
Microwave Pyrolysis of Rice Straw to Produce Biochar as an Adsorbent for CO2 Capture
,”
Energy
,
84
, pp.
75
82
. 10.1016/j.energy.2015.02.026
16.
Guo
,
T.
,
Ma
,
N.
,
Pan
,
Y.
,
Bedane
,
A. H.
,
Xiao
,
H.
,
Eić
,
M.
, and
Du
,
Y.
,
2018
, “
Characteristics of CO2 Adsorption on Biochar Derived From Biomass Pyrolysis in Molten Salt
,”
Can. J. Chem. Eng.
,
96
(
11
), pp.
2352
2360
. 10.1002/cjce.23153
17.
Ogunjobi
,
J. K.
, and
Lajide
,
L.
,
2015
, “
The Potential of Cocoa Pods and Plantain Peels as Renewable Sources in Nigeria
,”
Int. J. Green Energy
,
12
(
4
), pp.
440
445
. 10.1080/15435075.2013.848403
18.
Rangabhashiyam
,
S.
,
Anu
,
N.
, and
Selvaraju
,
N.
,
2013
, “
Sequestration of Dye From Textile Industry Wastewater Using Agricultural Waste Products as Adsorbents
,”
J. Environ. Chem. Eng.
,
1
(
4
), pp.
629
641
. 10.1016/j.jece.2013.07.014
19.
Njoku
,
V. O.
,
Ayuk
,
A. A.
,
Oguzie
,
E. E.
, and
Ejike
,
E. N.
,
2012
, “
Biosorption of Cd(II) From Aqueous Solution by Cocoa Pod Husk Biomass: Equilibrium, Kinetic, and Thermodynamic Studies
,”
Sep. Sci. Technol.
,
47
(
5
), pp.
753
761
. 10.1080/01496395.2011.626829
20.
Njoku
,
V. O.
,
2014
, “
Biosorption Potential of Cocoa Pod Husk for the Removal of Zn(II) From Aqueous Phase
,”
J. Environ. Chem. Eng.
,
2
(
2
), pp.
881
887
. 10.1016/j.jece.2014.03.003
21.
Bargougui
,
R.
,
Bouazizi
,
N.
,
Brun
,
N.
,
Fotsing
,
P. N.
,
Thoumire
,
O.
,
Ladam
,
G.
,
Woumfo
,
E. D.
,
Mofaddel
,
N.
,
Derf
,
F. L.
, and
Vieillard
,
J.
,
2018
, “
Improvement in CO2 Adsorption Capacity of Cocoa Shell Through Functionalization With Amino Groups and Immobilization of Cobalt Nanoparticles
,”
J. Environ. Chemical Eng.
,
6
(
1
), pp.
325
331
. 10.1016/j.jece.2017.11.079
22.
Vieillard
,
J.
,
Bouazizi
,
N.
,
Bargougui
,
R.
,
Brun
,
N.
,
Fotsing Nkuigue
,
P.
,
Oliviero
,
E.
,
Thoumire
,
O.
,
Couvrat
,
N.
,
Djoufac Woumfo
,
E.
,
Ladam
,
G.
,
Mofaddel
,
N.
,
Azzouz
,
A.
, and
Le Derf
,
F.
,
2018
, “
Cocoa Shell-Deriving Hydrochar Modified Through Aminosilane Grafting and Cobalt Particle Dispersion as Potential Carbon Dioxide Adsorbent
,”
Chem. Eng. J.
,
342
, pp.
420
428
. 10.1016/j.cej.2018.02.084
23.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
. 10.1021/ja01269a023
24.
Gregg
,
S. J.
, and
Sing
,
K. S. W.
,
1982
,
Adsorption, Surface and Porosity
, 2nd ed.,
Academic Press
,
London
.
25.
Zhao
,
A.
,
Samanta
,
A.
,
Sarkar
,
P.
, and
Gupta
,
R.
,
2013
, “
Carbon Dioxide Adsorption on Amine-Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study
,”
Ind. Eng. Chem. Res.
,
52
(
19
), pp.
6480
6491
. 10.1021/ie3030533
26.
Liu
,
Q.
,
Shi
,
J.
,
Zheng
,
S.
,
Tao
,
M.
,
He
,
Y.
, and
Shi
,
Y.
,
2014
, “
Kinetics Studies of CO2 Adsorption/Desorption on Amine-Functionalized Multiwalled Carbon Nanotubes
,”
Ind. Eng. Chem. Res.
,
53
(
29
), pp.
11677
11683
. 10.1021/ie502009n
27.
Souza
,
L. O.
,
Lessa
,
O. A.
,
Dias
,
M. C.
,
Tonoli
,
G. H. D.
,
Rezende
,
D. V. B.
,
Martins
,
M. A.
,
Neves
,
I. C. O.
,
de Resende
,
J. V.
,
Carvalho
,
E. E. N.
,
de Barros Vilas Boas
,
E. V.
,
de Oliveira
,
J. R.
, and
Franco
,
M.
,
2019
, “
Study of Morphological Properties and Rheological Parameters of Cellulose Nanofibrils of Cocoa Shell (Theobroma Cacao L.)
,”
Carbohydr. Polym.
,
214
, pp.
152
158
. 10.1016/j.carbpol.2019.03.037
28.
Redgwell
,
R.
,
Trovato
,
V.
,
Merinat
,
S.
,
Curti
,
D.
,
Hediger
,
S.
, and
Manez
,
A.
,
2003
, “
Dietary Fibre in Cocoa Shell: Characterisation of Component Polysaccharides
,”
Food Chem.
,
81
(
1
), pp.
103
112
. 10.1016/S0308-8146(02)00385-0
29.
Adjin-Tetteh
,
M.
,
Asiedu
,
N.
,
Dodoo-Arhin
,
D.
,
Karam
,
A.
, and
Amaniampong
,
P. N.
,
2018
, “
Thermochemical Conversion and Characterization of Cocoa Pod Husks a Potential Agricultural Waste From Ghana
,”
Ind. Crops Prod.
,
119
, pp.
304
312
. 10.1016/j.indcrop.2018.02.060
30.
Azizi
,
K.
,
Keshavarz Moraveji
,
M.
, and
Abedini Najafabadi
,
H.
,
2017
, “
Characteristics and Kinetics Study of Simultaneous Pyrolysis of Microalgae Chlorella Vulgaris, Wood and Polypropylene Through TGA
,”
Bioresour. Technol.
,
243
, pp.
481
491
. 10.1016/j.biortech.2017.06.155
31.
Davis
,
R.
,
2018
,
Practical Numerical Methods for Chemical Engineers Using Excel With VBA
, 4th ed.,
KDP
,
Duluth
.
You do not currently have access to this content.