Abstract

The photovoltaic energy is widely used in modern power network due to its environmental and economic benefits. Solar car park is one of the solar photovoltaic system applications. The photovoltaic energy has disadvantages of intermittence and weather's variation. Thus, photovoltaic power prediction is very necessary to guarantee a balance between the produced energy and the solar car park requirements. The prediction of the photovoltaic energy is related to solar irradiation and ambient temperature forecasting. The aim of this study was to evaluate various methodologies for weather data estimation, namely, the empirical models, the multilayer perceptron neural network (MLPNN), and the adaptive neuro-fuzzy inference system (ANFIS). The simulation results show that the ANFIS model can be successfully used to forecast the photovoltaic power. The forecasted photovoltaic energy was used for the solar car park lighting office management algorithm.

References

1.
Jo
,
B. K.
, and
Jang
,
G.
,
2019
, “
An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market
,”
Sustainability
,
11
(
16
), pp.
1
17
.
2.
Al-Waeli
,
A. H. A.
,
Moanis
,
A. H. K. A.-K.
,
Kamal El
,
M.
,
Din
,
A.
,
Al-Mamari
,
H. A. K.
, and
Chaichan
,
M. T.
,
2015
, “
A Photovoltaic Application in Car Parking Lights With Recycled Batteries: A Techno-Economic Study
,”
Aust. J. Basic Appl. Sci.
,
9
(
36
), pp.
43
45
.
3.
Elobaid
,
L. M.
,
Abdelsalam
,
A. K.
, and
Zakzouk
,
E. E.
,
2015
, “
Artificial Neural Network-Based Photovoltaic Maximum Power Point Tracking Techniques: A Survey
,”
IET Renew. Power Gener.
,
9
(
8
), pp.
1043
1063
. 10.1049/iet-rpg.2014.0359
4.
Lawin
,
A. E.
,
Niyongendako
,
M.
, and
Manirakiza
,
C.
,
2019
, “
Solar Irradiance and Temperature Variability and Projected Trends Analysis in Burundi
,”
Climate
,
7
(
6
), pp.
1
20
. 10.3390/cli7060083
5.
Huang
,
C. M.
,
Chen
,
S. J.
, and
Yang
,
S.-P.
,
2015
, “
One-day-ahead Hourly Forecasting for Photovoltaic Power Generation Using an Intelligent Method With Weather-Based Forecasting Models
,”
IET Gener. Transm. Distrib.
,
9
(
14
), pp.
1874
1882
. 10.1049/iet-gtd.2015.0175
6.
Teyabeen
,
A. A.
, and
Jwaid
,
A. E.
,
2017
, “
Sunshine Duration-Based Models for Predicting Global Solar Radiation
,”
2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)
,
IEEE
, pp.
168
172
.
7.
Bakirci
,
K.
, and
Kirtiloglu
,
Y.
,
2018
, “
Prediction of Diffuse Solar Radiation Using Satellite Data
,”
Int. J. Green Energy
,
15
(
2
), pp.
76
79
. 10.1080/15435075.2018.1423976
8.
Du
,
J.
,
Min
,
Q.
,
Zhang
,
P.
,
Guo
,
J.
,
Yang
,
J.
, and
Yin
,
B.
,
2018
, “
Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model
,”
Energies
,
11
(
5
), pp.
1
16
.
9.
Qu
,
Z.
,
Oumbe
,
A.
,
Blanc
,
P.
,
Espinar
,
B.
,
Gesell
,
G.
,
Gschwind
,
B.
, and
Wald
,
L.
,
2017
, “
Fast Radiative Transfer Parameterisation for Assessing the Surface Solar Irradiance: The Heliosat-4 Method
,”
Meteorol. Z.
,
26
(
1
), pp.
33
57
. 10.1127/metz/2016/0781
10.
Calinoiu
,
D.
,
Stefu
,
N.
,
Boata
,
R.
,
Blaga
,
R.
,
Pop
,
N.
,
Paulescu
,
E.
, and
Paulescu
,
M.
,
2018
, “
Parametric Modeling: A Simple and Versatile Route to Solar Irradiance
,”
Energy Convers. Manage.
,
164
, pp.
175
187
. 10.1016/j.enconman.2018.02.077
11.
Zhang
,
X.
,
Tan
,
S. C.
, and
Li
,
G.
,
2014
, “
Development of an Ambient Air Temperature Prediction Model
,”
Energy Build.
,
73
, pp.
166
170
. 10.1016/j.enbuild.2014.01.006
12.
Chabane
,
F.
,
Moummi
,
N.
,
Brima
,
A.
, and
Moummi
,
A.
,
2016
, “
Prediction of the Theoretical and Semi-Empirical Model of Ambient Temperature
,”
Front. Energy
,
10
(
3
), pp.
268
276
. 10.1007/s11708-016-0413-y
13.
Mousavi Maleki
,
S. A.
,
Hizam
,
H.
, and
Gomes
,
C.
,
2017
, “
Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited
,”
Energies
,
10
(
1
), pp.
1
28
. 10.3390/en10010134
14.
Massucco
,
S.
,
Mosaico
,
G.
,
Saviozzi
,
M.
, and
Silvestro
,
F.
,
2019
, “
A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach
,”
Energies
,
12
(
7
), pp.
1
21
. 10.3390/en12071298
15.
Benmouiza
,
K.
, and
Cheknane
,
A.
,
2019
, “
Clustered ANFIS Network Using Fuzzy c-Means, Subtractive Clustering, and Grid Partitioning for Hourly Solar Radiation Forecasting
,”
Theor. Appl. Climatol.
,
137
(
1–2
), pp.
31
43
. 10.1007/s00704-018-2576-4
16.
Kassem
,
A. S.
,
Aboukarima
,
A. M.
,
El Ashmawy
,
N. M.
, and
Zayed
,
M.
,
2016
, “
Comparison of Empirical Models and an Adaptive Neuro Fuzzy Inference System for Estimating Hourly Total Solar Radiation on Horizontal Surface at Alexandria City, Egypt
,”
Adv. Res.
,
7
(
5
), pp.
1
17
. 10.9734/AIR/2016/27194
17.
Boussaada
,
Z.
,
Curea
,
O.
,
Remaci
,
A.
,
Camblong
,
H.
, and
Bellaaj
,
N. M.
,
2018
, “
A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation
,”
Energies
,
11
(
3
), p.
620
. 10.3390/en11030620
18.
Chaabene
,
M.
, and
Ammar
,
M. B.
,
2008
, “
Neuro-fuzzy Dynamic Model With Kalman Filter to Forecast Irradiance and Ambient Temperature for Solar Energy Systems
,”
Renewable Energy
,
33
(
7
), pp.
1435
1443
. 10.1016/j.renene.2007.10.004
19.
Demirdelen
,
T.
,
Aksu
,
I. O.
,
Esenboga
,
B.
,
Aygul
,
K.
,
Ekinci
,
F.
, and
Bilgili
,
M.
,
2019
,
Solar Photovoltaic Power Plants
,
Radu-Emil
,
Precup
,
T.
Kamal
and
S.
Zulqadar Hassan
, eds.,
Springer
,
Singapore
, pp.
165
189
.
20.
Voyant
,
C.
,
Notton
,
G.
,
Kalogirou
,
S.
,
Nivet
,
M.-L.
,
Paoli
,
C.
,
Motte
,
F.
, and
Fouilloy
,
A.
,
2017
, “
Machine Learning Methods for Solar Radiation Forecasting: A Review
,”
Renewable Energy
,
105
, pp.
569
582
. 10.1016/j.renene.2016.12.095
21.
Afzali
,
M.
,
Afzali
,
A.
, and
Zahedi
,
G.
,
2011
, “
Ambient Air Temperature Forecasting Using Artificial Neural Network Approach
,”
International Conference on Environmental and Computer Science IPCBEE
, 19, pp.
176
180
.
22.
Pitalúa-Díaz
,
N.
,
Arellano-Valmaña
,
F.
,
Ruz-Hernandez
,
J. A.
,
Matsumoto
,
Y.
,
Alazki
,
H.
,
Herrera-López
,
E. J.
, and
Velázquez-Contreras
,
E. F.
,
2019
, “
An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico
,”
Energies
,
12
(
14
), pp.
1
16
. 10.3390/en12142662
23.
Nkounga
,
W. M.
,
Ndiaye
,
M. F.
,
Ndiaye
,
M. L.
,
Cisse
,
O.
,
Mamadou
,
B. O. P.
, and
Sioutas
,
A.
,
2018
, “
Short-term Forecasting for Solar Irradiation Based on the Multi-Layer Neural Network with the Levenberg-Marquardt Algorithm and Meteorological Data: Application to the Gandon Site
,”
7th International Conference on Renewable Energy Research and Applications (ICRERA)
,
Paris, France
,
Oct. 14–17
, pp.
869
874
.
24.
Umer
,
F.
,
Aslam
,
M. S.
,
Rabbani
,
M. S.
,
Hanif
,
M. J.
,
Naeem
,
N.
, and
Abbas
,
M. T.
,
2019
, “
Design and Optimization of Solar Carport Canopies for Maximum Power Generation and Efficiency at Bahawalpur
,”
Int. J. Photoenergy
,
2019
, pp.
1
8
. 10.1155/2019/6372503
25.
Ammar
,
M. B.
,
Ammar
,
M. B.
, and
Abdallah
,
H. H.
,
2018
, “
Contribution to the Study and Economic Energy Sizing of Photovoltaic Systems
,”
Proceedings of the International Conference on Recent Advances in Electrical Systems
,
Tunisia
, pp.
1
8
.
26.
Ammar
,
R. B.
, and
Oualha
,
A.
,
2017
, “
Photovoltaic Power Forecasting Using Recurrent Neural Networks
,”
14th International Multi-Conference on IEEE Systems, Signals and Devices (SSD)
,
Marrakech, Morocco
,
Mar. 28–31
, pp.
537
544
.
27.
Larminie
,
J.
, and
Lowry
,
J.
,
2012
,
Electric Vehicle Technology Explained
,
John Wiley & Sons
,
New York
, pp.
1
296
.
28.
Ouachani
,
I.
,
Rabhi
,
A.
,
Yahyaoui
,
I.
,
Tidhaf
,
B.
, and
Tadeo
,
T. F.
,
2017
, “
Renewable Energy Management Algorithm for a Water Pumping System
,”
Energy Procedia
,
111
, pp.
1030
1039
. 10.1016/j.egypro.2017.03.266
29.
Cooper
,
P. I
,
1969
, “
The Absorption of Radiation in Solar Stills
,”
Sol. Energy
,
12
(
3
), pp.
333
346
. 10.1016/0038-092x(69)90047-4
30.
Okundamiya
,
M. S.
, and
Nzeako
,
A. N.
,
2011
, “
Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria
,”
J. Control Sci. Eng.
,
2011
, pp.
1
7
. 10.1155/2011/356405
31.
Szokolay
,
S. V.
,
1996
, “Solar Geometry,” PLEA, Passive and Low Energy Architecture International. Passive and Low Energy Architecture International in Association With Department of Architecture, The University of Queensland Brisbane 4072.
32.
Bernard
,
J.
,
2011
,
Energie Solaire: Calculs et Optimisation
,
Ellipses
, Collection Technosup-edition.
33.
Badescu
,
V.
,
2014
,
Modeling Solar Radiation at the Earth’s Surface
,
Springer
,
Berlin Heidelberg
, pp.
29
54
.
34.
Paulescu
,
M.
,
TulcanPaulescu
,
E.
, and
Stefu
,
N.
,
2011
, “
A Temperature Based Model for Global Solar Irradiance and Its Application to Estimate Daily Irradiation Values
,”
Int. J. Energy Res.
,
35
(
6
), pp.
520
529
. 10.1002/er.1709
35.
La Gennusa
,
M.
,
Nucara
,
A.
,
Pietrafesa
,
M.
, and
Rizzo
,
G.
,
2007
, “
A Model for Managing and Evaluating Solar Radiation for Indoor Thermal Comfort
,”
Sol. Energy
,
81
(
5
), pp.
594
606
. 10.1016/j.solener.2006.09.005
36.
Ozoegwu
,
C. G.
,
2019
, “
Artificial Neural Network Forecast of Monthly Mean Daily Global Solar Radiation of Selected Locations Based on Time Series and Month Number
,”
J. Cleaner Prod.
,
216
, pp.
1
13
. 10.1016/j.jclepro.2019.01.096
37.
Zarai
,
N.
,
Chaabane
,
M.
, and
Gabsi
,
S.
,
2010
, “
Outil de Planification de la Production Thermique des Capteurs Solaires
,”
International Renewable Energy Congress
,
Sousse, Tunisia
,
Nov. 5–7
.
38.
Marif
,
Y.
,
Chiba
,
Y.
,
Belhadj
,
M. M.
,
Zerrouki
,
M.
, and
Benhammou
,
M.
,
2018
, “
A Clear Sky Radiation Assessment Using a Modified Algerian Solar Atlas Model in Adrar City
,”
Energy Reports
,
4
, pp.
84
90
. 10.1016/j.egyr.2017.09.002
39.
De Brichambaut
,
C. P.
,
1975
, “Estimation des ressources énergétiques solaires en France. Association francaise pour l'etude et le developpement des applications de l'energie solaire,” Editions Européennes Thermique & Industrie.
40.
Loghmari
,
I.
, and
Timoumi
,
Y.
,
2017
, “
Improvement Global Solar Radiation Estimation
,”
IET Renew. Power Gener.
,
11
(
7
), pp.
996
1004
. 10.1049/iet-rpg. 2017.0118
41.
El Mghouchi
,
Y.
,
Chham
,
E.
,
Zemmouri
,
E. M.
, and
El Bouardi
,
A.
,
2019
, “
Assessment of Different Combinations of Meteorological Parameters for Predicting Daily Global Solar Radiation Using Artificial Neural Networks
,”
Build. Environ.
,
149
, pp.
607
622
. 10.1016/j.buildenv.2018.12.055
42.
Tolabi
,
H. B.
,
Moradi
,
M. H.
, and
Ayob
,
S. B. M.
,
2014
, “
A Review on Classification and Comparison of Different Models in Solar Radiation Estimation
,”
Int. J. Energy Res.
,
38
(
6
), pp.
689
701
. 10.1002/er.3161
43.
Akhter
,
M. N.
,
Mekhilef
,
S.
,
Mokhlis
,
H.
, and
Shah
,
N. M.
,
2019
, “
Review on Forecasting of Photovoltaic Power Generation Based on Machine Learning and Metaheuristic Techniques
,”
IET Renew. Power Gener.
,
13
(
7
), pp.
1009
1023
. 10.1049/iet-rpg.2018.5649
44.
Torabi
,
M.
,
Mosavi
,
A.
,
Ozturk
,
P.
,
Varkonyi-Koczy
,
A.
, and
Istvan
,
V.
,
2018
, “
A Hybrid Machine Learning Approach for Daily Prediction of Solar Radiation
,”
International Conference on Global Research and Education
,
KTU, Kaunas
,
Sept. 24–27
, pp.
266
274
.
45.
Tawfiq
,
L. N.
,
2015
, “
Improve Levenberg-Marquardt Training Algorithm for Feed Forward Neural Networks
,”
Int. J. Modern Eng. Sci
,
4
(
1
), pp.
14
21
.
46.
Şahin
,
M.
,
Kaya
,
Y.
,
Uyar
,
M.
, and
Yıldırım
,
S.
,
2014
, “
Application of Extreme Learning Machine for Estimating Solar Radiation From Satellite Data
,”
Int. J. Energy Res.
,
38
(
2
), pp.
205
212
. 10.1002/er.3030
47.
Jang
,
J. S.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
665
685
. 10.1109/21.256541
48.
Chikh
,
A.
, and
Chandra
,
A.
,
2014
, “
Adaptive Neuro-Fuzzy Based Solar Cell Model
,”
IET Renew. Power Gener.
,
8
(
6
), pp.
679
686
. 10.1049/iet-rpg.2013.0183
49.
Zou
,
L.
,
Wang
,
L.
,
Xia
,
L.
,
Lin
,
A.
,
Hu
,
B.
, and
Zhu
,
H.
,
2017
, “
Prediction and Comparison of Solar Radiation Using Improved Empirical Models and Adaptive Neuro-Fuzzy Inference Systems
,”
Renewable Energy
,
106
, pp.
343
353
. 10.1016/j.renene.2017.01.042
50.
Yahyaoui
,
I.
,
Chaabene
,
M.
, and
Tadeo
,
F.
,
2015
, “
Fuzzy Energy Management for Photovoltaic Water Pumping System
,”
Int. J. Comput. Appl.
,
110
(
9
), pp.
29
36
. 10.5120/19346-1049
51.
Notton
,
G.
,
Voyant
,
C.
,
Fouilloy
,
A.
,
Duchaud
,
J. L.
, and
Nivet
,
M. L.
,
2019
, “
Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications
,”
Appl. Sci.
,
9
(
1
), pp.
209
230
. 10.3390/app9010209
52.
Benali
,
L.
,
Notton
,
G.
,
Fouilloy
,
A.
,
Voyant
,
C.
, and
Dizene
,
R.
,
2019
, “
Solar Radiation Forecasting Using Artificial Neural Network and Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components
,”
Renewable Energy
,
132
, pp.
871
884
. 10.1016/j.renene.2018.08.044
You do not currently have access to this content.