Abstract

Several correlations are available to determine the fracture pressure, a vital property of a well, which is essential in the design of the drilling operations and preventing problems. Some of these correlations are based on the rock and formation characteristics, and others are based on log data. In this study, five artificial intelligence (AI) techniques predicting fracture pressure were developed and compared with the existing empirical correlations to select the optimal model. Real-time data of surface drilling parameters from one well were obtained using real-time drilling sensors. The five employed methods of AI are functional networks (FN), artificial neural networks (ANN), support vector machine (SVM), radial basis function (RBF), and fuzzy logic (FL). More than 3990 datasets were used to build the five AI models by dividing the data into training and testing sets. A comparison between the results of the five AI techniques and the empirical fracture correlations, such as the Eaton model, Matthews and Kelly model, and Pennebaker model, was also performed. The results reveal that AI techniques outperform the three fracture pressure correlations based on their high accuracy, represented by the low average absolute percentage error (AAPE) and a high coefficient of determination (R2). Compared with empirical models, the AI techniques have the advantage of requiring less data, only surface drilling parameters, which can be conveniently obtained from any well. Additionally, a new fracture pressure correlation was developed based on ANN, which predicts the fracture pressure with high precision (R2 = 0.99 and AAPE = 0.094%).

References

1.
Zhang
,
J.
, and
Yin
,
S.-X.
,
2017
, “
Fracture Gradient Prediction: An Overview and an Improved Method
,”
Pet. Sci.
,
14
(
4
), pp.
720
730
. 10.1007/s12182-017-0182-1
2.
Mitchell
,
R. L.
,
Miska
,
S. Z.
, and
Aadnoy
,
B. S.
,
2011
,
Fundamentals of Drilling Engineering
,
Society of Petroleum Engineers
,
Richardson, TX
.
3.
Adams
,
N. J.
,
1985
,
Drilling Engineering: A Complete Well Planning Approach
,
Pennwell
,
Tulsa, OK
.
4.
Almagro
,
S. P.
,
Frates
,
C.
,
Garand
,
J.
, and
Meyer
,
A.
,
2014
, “
Sealing Fractures: Advances in Lost Circulation Control Treatments
,”
Oilfield Rev.
,
26
(
3
), pp.
4
13
. http://www.slb.com/resources/publications/industry_articles/oilfield_review/2014/or2014aut01_sealing.aspx
5.
Al-Hameedi
,
A. T. T.
,
Alkinani
,
H. H.
,
Dunn-Norman
,
S.
,
Flori
,
R. E.
,
Hilgedick
,
S. A.
,
Amer
,
A. S.
, and
Alsaba
,
M. T.
,
2018
, “
Using Machine Learning to Predict Lost Circulation in the Rumaila Field, Iraq
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Brisbane, Australia
,
Oct. 23–25
, SPE-191933-MS. http://dx.doi.org/10.2118/191933-MS
6.
Abdollahi
,
J.
,
Carlsen
,
I. M.
,
Mjaaland
,
S.
,
Skalle
,
P.
,
Rafiei
,
A.
, and
Zarei
,
S.
,
2004
, “
Underbalanced Drilling as a Tool for Optimized Drilling and Completion Contingency in Fractured Carbonate Reservoirs
,”
SPE/IADC Underbalanced Arabian Journal for Science and Engineering 1 3 Technology Conference and Exhibition
,
Houston, TX
,
Oct. 11–12
, SPE-91579-MS. http://dx.doi.org/10.2118/91579-MS
7.
Chilingarian
,
G. V.
, and
Vorabutr
,
P.
,
1981
,
Drilling and Drilling Fluids
,
Elsevier
,
Amsterdam a.o
.
8.
Postler
,
D. P.
,
1997
, “
Pressure Integrity Test Interpretation
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Mar. 4–6
. http://dx.doi.org/10.2118/37589-MS
9.
Hossain
,
M. E.
, and
Al-Majed
,
A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
Scrivener Publishing
,
Beverly, MA
.
10.
Hubbert
,
M. K.
, and
Willis
,
D. G.
,
1957
,
Mechanics of Hydraulic Fracturing
,
Society of Petroleum Engineers
,
Houston, TX
.
11.
Matthews
,
W. R.
, and
Kelly
,
J.
,
1967
, “
How to Predict Formation Pressure and Fracture Gradient
,”
Oil Gas J.
,
65
, pp.
92
1066
.
12.
Pennebaker
,
E. S.
,
1968
, “
Detection of Abnormal-Pressure Formation From Seismic Field Data
,”
Drilling and Production Practice, 1
,
New York
,
January
,
American Petroleum Institute
,
New York
. API-68-184. https://www.onepetro.org/conference-paper/API-68-184
13.
Eaton
,
B. A.
,
1969
, “
Fracture Gradient Prediction and Its Application in Oilfield Operations
,”
Soc. Pet. Eng.
,
21
(
10
), pp.
1353
1360
. 10.2118/2163-PA
14.
Christman
,
S. A.
,
1973
, “
Offshore Fracture Gradients
,”
Soc. Pet. Eng.
,
25
(
8
), pp.
910
914
. 10.2118/4133-PA
15.
Anderson
,
R. A.
,
Ingram
,
D. S.
, and
Zanier
,
A. M.
,
1973
, “
Determining Fracture Pressure Gradients From Well Logs
,”
Soc. Pet. Eng.
,
25
(
11
), pp.
1259
1268
. 10.2118/4135-PA
16.
Mohaghegh
,
S.
,
Arefi
,
R.
,
Ameri
,
S.
, and
Rose
,
D.
,
1995
, “
Design and Development of an Artificial Neural Network for Estimation of Formation Permeability
,”
Soc. Pet. Eng.
,
7
(
6
), pp.
151
154
. 10.2118/28237-PA
17.
Bilgesu
,
H. I.
,
Altmis
,
U.
,
Ameri
,
S.
,
Mohaghegh
,
S.
, and
Aminian
,
K.
,
1998
, “
A New Approach to Predict Bit Life Based on Tooth or Bearing Failures
,”
SPE Eastern Regional Meeting
,
Pittsburgh, PA
,
Nov. 9–11
,
Society of Petroleum Engineers
.
18.
Abdelgawad
,
K.
,
Elkatatny
,
S. M.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
J. Energy Resour. Technol.
,
141
(
3
), p.
032908
. 10.1115/1.4042233
19.
Mahmoud
,
A.
,
Elkatatny
,
S. M.
, and
Elzenary
,
M.
,
2020
, “
New Hybrid Hole Cleaning Model for Vertical and Deviated Wells
,”
J. Energy Resour. Technol.
,
142
(
3
), p.
034501
. 10.1115/1.4045169
20.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
. 10.1115/1.4039270
21.
Elkatatny
,
S.
,
2018
, “
Application of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline Log Data
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072905
. 10.1115/1.4039613
22.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
. 10.1115/1.4038131
23.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Technique to Develop Rock Strength Correlation Using Artificial Intelligence Tools
,”
SPE Reservoir Characterisation and Simulation Conference and Exhibition
,
Abu Dhabi, UAE
,
May 8–10
.
24.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Mohamed
,
I.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Mathematical Model for Compressional and Shear Sonic Times From Wireline Log Data Using Artificial Intelligence Neural Networks (White Box)
,”
Arabian J. Sci. Eng.
,
43
(
11
), pp.
6375
6389
. 10.1007/s13369-018-3094-5
25.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Approach to Predict Failure Parameters of Carbonate Rocks Using Artificial Intelligence Tools
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
.
26.
Elkatatny
,
S.
,
Aloosh
,
R.
,
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2017
, “
Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial IntelligenceTechnique
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
.
27.
Elkatatny
,
S.
,
2017
, “
New Approach to Optimize the Rate of Penetration Using Artificial Neural Network
,”
Arabian J. Sci. Eng.
,
43
(
11
), pp.
6297
6304
. 10.1007/s13369-017-3022-0
28.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2016
, “
A Holistic Approach to Develop New Rigorous Empirical Correlation for Static Young's Modulus
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 7–10
.
29.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
,
4
(
2
), pp.
178
186
. 10.1016/j.petlm.2017.09.009
30.
Al-Azani
,
K.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Ramadan
,
E.
, and
Abdulraheem
,
A.
,
2019
, “
Cutting Concentration Prediction in Horizontal and Deviated Wells Using Artificial Intelligence Techniques
,”
J. Pet. Explor. Prod. Technol.
,
9
(
4
), pp.
2769
2779
. 10.1007/s13202-019-0672-3
31.
Lippmann
,
R. P.
,
1987
, “
An Introduction to Computing With Neural Nets
,”
IEEE ASSP Mag.
,
4
(
2
), pp.
4
22
. 10.1109/MASSP.1987.1165576
32.
Ahmed
,
A.
,
Ali
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
New Artificial Neural Networks Model for Predicting Rate of Penetration in Deep Shale Formation
,”
Sustainability
,
11
(
22
), p.
6527
. 10.3390/su11226527
33.
Schalkoff
,
R.
,
1997
,
Artificial Neural Networks
,
The University of Michigan: McGraw-Hill
,
New York City
.
34.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Model for Pore Pressure Prediction While Drilling Using Artificial Neural Networks
,”
Arabian J. Sci. Eng.
,
44
, pp.
6079
6088
. 10.1007/s13369-018-3574-7
35.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Ali
,
A.
, and
Abdulraheem
,
A.
,
2019
, “
Comparative Analysis of Artificial Intelligence Techniques for Formation Pressure Prediction While Drilling
,”
Arabian J. Geosci.
,
12
(
592
), pp.
1
13
. 10.1007/s12517-019-4800-7
36.
Orr
,
M. J.
,
1996
, “
Introduction to Radial Basis Function Networks
,” https://www.cc.gatech.edu/∼isbell/tutorials/rbf-intro.pdf, Accessed November 22, 2017.
37.
Chen
,
S.
,
Cowan
,
C.
, and
Grant
,
P.
,
1991
, “
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
,”
IEEE Trans. Neural Networks
,
2
(
2
), pp.
302
309
. 10.1109/72.80341
38.
Ahmed
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2019
, “
Fracture Pressure Prediction Using Radial Basis Function
,”
AADE National Technical Conference and Exhibition
,
Denver, CO
,
Apr. 9–10
, AADE-19-NTCE-061. https://www.aade.org/application/files/1415/7132/0393/AADE-19-NTCE-061_-_Ahmed_S.pdf
39.
Alarfaj
,
M. K.
,
Abdulraheem
,
A.
, and
Busaleh
,
Y. R.
,
2012
, “
Estimating Dewpoint Pressure Using Artificial Intelligence
,”
Society of Petroleum Engineers
,
Dhahran, Saudi Arabia
.
40.
Chen
,
C. L.
,
Chen
,
W. C.
, and
Chang
,
F. Y.
,
1993
, “
Hybrid Learning Algorithm for Gaussian Potential Function Networks
,”
IEE Proceedings-D, Control Theory and Applications
,
140
(
6
), pp.
442
448
. Nov.
41.
Elkatatny
,
S. M.
,
Zeeshan
,
T.
,
Mahmoud
,
M.
,
Abdulazeez
,
A.
, and
Mohamed
,
I. M.
,
2016
, “
Application of Artificial Intelligent Techniques to Determine Sonic Time From Well Logs
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June 26–29
,
American Rock Mechanics Association
. https://www.onepetro.org/conference-paper/ARMA-2016-755
42.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
Pore Pressure Prediction While Drilling Using Fuzzy Logic
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
.
43.
Anifowose
,
F.
, and
Abdulazeez
,
A.
,
2015
, “
Fuzzy Logic-Driven and SVM-Driven Hybrid Computational Intelligence Models Applied to Oil and Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
,
3
(
3
), pp.
505
517
. 2011 ISSN 1875-5100. 10.1016/j.jngse.2011.05.002
44.
Christopher
,
J. C. B.
,
1998
, “
A Tutorial on Support Vector Machines for Pattern Recognition
,”
Data Min. Knowl. Discovery
,
2
(
2
), pp.
121
167
. https://www.di.ens.fr/∼mallat/papiers/svmtutorial.pdf 10.1023/A:1009715923555
45.
Shawe-Taylor
,
J.
, and
Cristianini
,
N.
,
2000
,
Support Vector Machines and Other Kernel-Based Learning Methods
,
Cambridge University Press
,
Cambridge, UK
.
46.
Schölkopf
,
B.
,
Burges
,
C. J. C.
, and
Smola
,
A. J.
,
1999
,
Advances in Kernel Methods- Support Vector Learning
,
MIT Press
,
Cambridge
.
47.
Ahmed
,
A.
,
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Prediction of Pore and Fracture Pressures Using Support Vector Machine
,”
IPTC-19523-MS. International Petroleum Technology Conference Held in Beijing, China
,
Mar. 26–28
. http://dx.doi.org/10.2523/IPTC-19523-MS
48.
El-Sebakhy
,
E. A.
,
Sheltami
,
T.
,
Al-Bokhitan
,
S. Y.
,
Shaaban
,
Y.
,
Raharja
,
P. D.
, and
Khaeruzzaman
,
Y.
,
2007
, “
Support Vector Machines Framework for Predicting the PVT Properties of Crude Oil Systems
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 11–14
,
Society of Petroleum Engineers
.
49.
Bello
,
O.
, and
Asafa
,
T.
,
2014
, “
A Functional Networks Softsensor for Flowing Bottomhole Pressures and Temperatures in Multiphase Production Wells
,”
SPE Intelligent Energy Conference & Exhibition
,
Utrecht, The Netherlands
,
Apr. 1–3
, SPE-167881-MS. http://dx.doi.org/10.2118/167881-MS
50.
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
, and
Al-Shehri
,
D. A.
,
2018
, “
On Utilizing Functional Network to Develop Mathematical Model for Poisson's Ratio Determination
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
,
Seattle, WA
,
June 17–20
, ARMA-2018-744. https://www.onepetro.org/conference-paper/ARMA-2018-744
51.
Sadiq
,
T.
, and
Nashawi
,
I. S.
,
2000
, “
Using Neural Networks for Prediction of Formation Fracture Gradient
,”
SPE/CIM International Conference on Horizontal Well Technology
,
Calgary, Alberta, Canada
,
Nov. 6–8
,
Society of Petroleum Engineers
.
52.
Malallah
,
A.
, and
Nashawi
,
I. S.
,
2005
, “
Estimating the Fracture Gradient Coefficient Using Neural Networks for a Field in the Middle East
,”
J. Pet. Sci. Eng.
,
49
(
3–4
), pp.
193
211
. 10.1016/j.petrol.2005.05.006
53.
Keshavarzi
,
R.
,
Jahanbakhshi
,
R.
, and
Rashidi
,
M.
,
2011
, “
Predicting Formation Fracture Gradient in Oil and Gas Wells: A Neural Network Approach
,”
45th US Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 26–29
,
American Rock Mechanics Association
. ARMA-11-114. https://www.onepetro.org/download/conference-paper/ARMA-11-114?id=conference-paper%2FARMA-11-114
You do not currently have access to this content.