Abstract

Whitebox model in a model predictive controller (MPC) for energy systems, though does help in developing an accurate system model, requires a long time for optimization. In this article, an adaptation of the clustering technique used in hardware-in-the-loop testbench is proposed for evaluation of the MPC on an annual scale with selected six representative days in a year for that particular system and location. Initially, the various input parameters for clustering (algorithm, distance metric, and datapoint input dimensions) are studied for the selected thermal-electrical integrated renewable energy system (with solar thermal collectors, auxiliary gas boiler, stratified thermal storage, micro fuel cell combined heat and power (FC-CHP), photovoltaic system, a lithium-ion battery) for a Sonnenhaus standard single-family residential building. Finally, the proposed methodology is used to compare the annual derived energy values and key performance indicators (KPIs) for an MPC implementation with a status quo controller as a reference. Also, extreme exemplary weather days are investigated as the selected representative days were only average days in each season. Despite the conflict of using the FC-CHP on cold sunny days, instead of utilizing the battery and increased gas boiler energy input, a 9% increase in decentral system fraction is reported. Via the use of MPC instead of status quo controllers, the results indicate −18% space heating (SH) demand; +30% solar thermal energy production; −29% gas boiler energy supply; −52% power-to-heat thermal energy supply; −52% electrical fuel cell production; +240 kWh battery utilization; and −52% reduced grid import at the expense of 1.2% of the electrical load demand as grid import.

References

1.
Bundesministerium für Wirtschaft und Energie (BMWi)
,
2019
, “
Zweiter Fortschrittsbericht zur Energiewende, Die Energie der Zukunft.
2.
Prognos
,
AG
,
Fraunhofer
,
ISI
,
GWS
, and
iinas
,
2020
, “
Energiewirtschaftliche Projektionen und Folgeabschätzungen 2030/2050.
3.
Bundesministerium für Wirtschaft und Energie (BMWi)
,
2015
,
Energieeffizienzstrategie Gebäude, Wege zu einem nahezu klimaneutralen Gebäudebestand.
4.
Narayanan
,
M.
,
Mengedoht
,
G.
, and
Commerell
,
W.
,
2018
, “
Importance of Buildings and Their Influence in Control System: A Simulation Case Study With Different Building Standards From Germany
,”
Int. J. Energy Environ. Eng.
,
9
(
4
), pp.
413
433
. 10.1007/s40095-018-0281-9
5.
Sturzenegger
,
D.
,
Gyalistras
,
D.
,
Morari
,
M.
, and
Smith
,
R. S.
,
2016
, “
Model Predictive Climate Control of a Swiss Office Building: Implementation, Results, and Cost–Benefit Analysis
,”
IEEE Trans. Control Syst. Technol.
,
24
(
1
), pp.
1
12
. 10.1109/TCST.2015.2415411
6.
Zakula
,
T.
,
2013
, “
Model Predictive Control for Energy Efficient Cooling and Dehumidification
.”
7.
Starcic
,
A.
,
Lesic
,
V.
, and
Vasak
,
M.
,
2016
, “
Predictive Control for Heating Power Variance and Peak Reduction in Buildings
,”
IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society
,
Florence, Italy
,
Oct. 23–26
, pp.
7089
7094
.
8.
Bruno
,
R.
,
Pizzuti
,
G.
, and
Arcuri
,
N.
,
2016
, “
The Prediction of Thermal Loads in Building by Means of the EN ISO 13790 Dynamic Model: A Comparison With TRNSYS
,”
Energy Procedia
,
101
(
1
), pp.
192
199
. 10.1016/j.egypro.2016.11.025
9.
Zhang
,
K.
,
2014
, “
Assessing Simplified and Detailed Models for Predictive Control of Space Heating in Homes
,”
9th International Conference on System Simulation in Buildings
,
Liege, Belgium
,
Dec. 10–12
, pp.
04.1
20
.
10.
Narayanan
,
M.
,
de Lima
,
A. F.
,
de Azevedo Dantas
,
A. F. O.
, and
Commerell
,
W.
,
2020
, “
Development of a Coupled TRNSYS-MATLAB Simulation Framework for Model Predictive Control of Integrated Electrical and Thermal Residential Renewable Energy System
,”
Energies
,
13
(
21
), p.
5761
. 10.3390/en13215761
11.
TRNSYS
,
2019
,
Transient System Simulation Tool—TRNSYS
,
Thermal Energy System Specialists LLC
,
Madison, WI
.
12.
MATLAB
,
2020
,
MATLAB Version 9.8.0 (R2020a)
,
The MathWorks Inc.
,
Natick, MA
.
13.
Ascione
,
F.
,
Bianco
,
N.
,
De Stasio
,
C.
,
Mauro
,
G. M.
, and
Vanoli
,
G. P.
,
2016
, “
Simulation-Based Model Predictive Control by the Multi-Objective Optimization of Building Energy Performance and Thermal Comfort
,”
Energy Build.
,
111
(
1
), pp.
131
144
. 10.1016/j.enbuild.2015.11.033
14.
Khanmirza
,
E.
,
Esmaeilzadeh
,
A.
, and
Markazi
,
A. H. D.
,
2017
, “
Design and Experimental Evaluation of Model Predictive Control vs. Intelligent Methods for Domestic Heating Systems
,”
Energy Build.
,
150
(
1
), pp.
52
70
. 10.1016/j.enbuild.2017.05.074
15.
Wanjiru
,
E. M.
,
Sichilalu
,
S. M.
, and
Xia
,
X.
,
2017
, “
Model Predictive Control of Heat Pump Water Heater-Instantaneous Shower Powered with Integrated Renewable-Grid Energy Systems
,”
Appl. Energy
,
204
(
1
), pp.
1333
1346
. 10.1016/j.apenergy.2017.05.033
16.
Ramos Ruiz
,
G.
,
Lucas Segarra
,
E.
, and
Fernández Bandera
,
C.
,
2019
, “
Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model
,”
Energies
,
12
(
1
), p.
34
. 10.3390/en12010034
17.
Tabares-Velasco
,
P. C.
,
Speake
,
A.
,
Harris
,
M.
,
Newman
,
A.
,
Vincent
,
T.
, and
Lanahan
,
M.
,
2019
, “
A Modeling Framework for Optimization-Based Control of a Residential Building Thermostat for Time-of-Use Pricing
,”
Appl. Energy
,
242
(
1
), pp.
1346
1357
. 10.1016/j.apenergy.2019.01.241
18.
Mugnini
,
A.
,
Coccia
,
G.
,
Polonara
,
F.
, and
Arteconi
,
A.
,
2020
, “
Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls
,”
Energies
,
13
(
12
), p.
3125
. 10.3390/en13123125
19.
Haller
,
M. Y.
,
Haberl
,
R.
,
Persson
,
T.
,
Bales
,
C.
,
Kovacs
,
P.
,
Chèze
,
D.
, and
Papillon
,
P.
,
2013
, “
Dynamic Whole System Testing of Combined Renewable Heating Systems—The Current State of the Art
,”
Energy Build.
,
66
(
1
), pp.
667
677
. 10.1016/j.enbuild.2013.07.052
20.
Vogelsanger
,
P.
,
2002
, “
The Concise Cycle Test Method–A Twelve Day System Test
,”
IEA SHC Task 26
.
21.
Bales
,
C.
,
2004
, “
Combitest: A New Test Method for Thermal Stores Used in Solar Combisystems.
22.
Albaric
,
M.
,
Nowag
,
J.
, and
Papillon
,
P.
,
2008
, “
Thermal Performance Evaluation of Solar Combisystems Using a Global Approach
,”
Eurosun – 1st International Conference on Solar Heating, Cooling and Buildings
,
Lisbon, Portugal
,
Oct. 7–10
, pp.
1010
1017
.
23.
Haberl
,
R.
,
Haller
,
M. Y.
,
Papillon
,
P.
,
Cheze
,
D.
,
Bales
,
C.
, and
Persson
,
T.
,
2015
, “
Testing of Combined Heating Systems for Small Houses: Improved Procedures for Whole System Test Methods
,”
Deliveralble 2.3 MacSheep Project
.
24.
Menegon
,
D.
,
Persson
,
T.
,
Haberl
,
R.
,
Bales
,
C.
, and
Haller
,
M.
,
2020
, “
Direct Characterisation of the Annual Performance of Solar Thermal and Heat Pump Systems Using a Six-Day Whole System Test
,”
Renewable Energy
,
146
(
1
), pp.
1337
1353
. 10.1016/j.renene.2019.07.031
25.
Adam
,
M.
,
Backes
,
K.
,
Wirth
,
H.
,
Eggert
,
D.
, and
Helbig
,
S.
,
2018
, “
Solar unterstützte Wärmezentralen in Mehrfamilienhäusern
,”
Abschlussbericht SUW-MFH
, p.
272
.
26.
2018
, “
Julia 1-3 — Dammann-Haus
”, https://www.dammann-haus.de/julia-1-3.html?articles=julia-1-3,
Accessed June 8, 2018.
27.
28.
Wening
,
J.
,
Schäfer
,
C.
,
Heinzl
,
A.
,
Neth
,
F.
,
Müller
,
M.
,
Mengedoht
,
G.
,
Commerell
,
W.
,
Lünsdorf
,
O.
,
Schimpe
,
M.
,
Zobel
,
M.
,
Blank
,
M.
, and
Gerster
,
J.
,
2018
,
Schlussbericht, Intelligentes Heimenergiemanagement (IHEM)
.
29.
Definition of CLUSTER ANALYSIS
”, https://www.merriam-webster.com/dictionary/cluster+analysis,
Accessed October 14, 2020
.
30.
Ghosal
,
A.
,
Nandy
,
A.
,
Das
,
A. K.
,
Goswami
,
S.
, and
Panday
,
M.
,
2020
, “A Short Review on Different Clustering Techniques and Their Applications,”
Emerging Technology in Modelling and Graphics
,
J. K.
Mandal
, and
D.
Bhattacharya
, eds.,
Springer
,
Singapore
, pp.
69
83
.
31.
Menegon
,
D.
,
2016
, “
Development of a Dynamic Test Procedure for the Laboratory Characterization of HVAC Systems.
32.
Domínguez-Muñoz
,
F.
,
Cejudo-López
,
J. M.
,
Carrillo-Andrés
,
A.
, and
Gallardo-Salazar
,
M.
,
2011
, “
Selection of Typical Demand Days for CHP Optimization
,”
Energy Build.
,
43
(
11
), pp.
3036
3043
. 10.1016/j.enbuild.2011.07.024
33.
Huchtemann
,
K.
,
Müller
,
D.
,
Nürenberg
,
M.
,
Engel
,
H.
, and
Mehrfeld
,
P.
,
2016
, “
Testing Method for Evaluation of a Realistic Seasonal Performance of Heat Pump Heating Systems: Determination of Typical Days
,”
12th REHVA World Congress, CLIMA 2016
,
Aalborg, Denmark/Heidelberg
,
May 22–25
.
You do not currently have access to this content.