Abstract

In this article, energy, exergy, and environmental (3E) analysis of a 400 MW thermal power plant is investigated. First, the components of the power plant are examined in terms of energy consumption, and subsequently the energy losses, exergy destruction, and exergetic efficiency are obtained. It is shown that the highest energy losses are in the closed feedwater heaters Nos. 1 and 5 and the boiler with amounts of 7.6 × 10 J/s and 6.5 × 107 J/s, respectively. The highest exergy destruction occurs in the boiler and amounts to 4.13 × 108 J/s. The highest exergetic efficiency is 0.98 and is associated with the closed feedwater heaters Nos. 4 and 8. It is observed that the exergetic efficiency and exergy destruction in the boiler are the primarily affected by changes in the environmental temperature. Furthermore, by increasing the main pressure in the turbine, the load on the power plant is increased, and increasing the condenser pressure reduces the load on the power plant. In an environmental analysis, the production of pollutants such as SO2 production and CO2 emission has been investigated.

References

1.
Ahmadi
,
G. R.
, and
Toghraie
,
D.
,
2016
, “
Energy and Exergy Analysis of Montazeri Steam Power Plant in Iran
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
454
463
. 10.1016/j.rser.2015.11.074
2.
Oboirien
,
B. O.
,
North
,
B. C.
, and
Kleyn
,
T.
,
2014
, “
Techno-Economic Assessments of Oxy-Fuel Technology for South African Coal-Fired Power Stations
,”
Energy
,
66
, pp.
550
555
. 10.1016/j.energy.2013.12.032
3.
Ehyaei
,
M. A.
,
Mozafari
,
A.
, and
Alibiglou
,
M. H.
,
2011
, “
Exergy, Economic & Environmental (3E) Analysis of Inlet Fogging for Gas Turbine Power Plant
,”
Energy
,
36
(
12
), pp.
6851
6861
. 10.1016/j.energy.2011.10.011
4.
Yang
,
Y.
,
Wang
,
L.
,
Dong
,
C.
,
Xu
,
G.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2013
, “
Comprehensive Exergy-Based Evaluation and Parametric Study of a Coal-Fired Ultra-Supercritical Power Plant
,”
Appl. Energy
,
112
, pp.
1087
1099
. 10.1016/j.apenergy.2012.12.063
5.
Afanasyeva
,
O. V.
, and
Mingaleeva
,
G. R.
,
2015
, “
Comprehensive Exergy Analysis of the Efficiency of a Low-Capacity Power Plant With Coal Gasification and Obtaining Sulfur
,”
Energy Effic.
,
8
(
2
), pp.
255
265
. 10.1007/s12053-014-9290-6
6.
Clay
,
J.
, and
Mathias
,
J.
,
2018
, “
Energetic and Exergetic Analysis of a Multi-Stage Turbine, Coal-Fired 173 MW Power Plant
,”
Int. J. Exergy
,
27
(
4
), pp.
419
436
. 10.1504/IJEX.2018.096000
7.
Koroneos
,
C. J.
,
Fokaides
,
P. A.
, and
Christoforou
,
E. A.
,
2014
, “
Exergy Analysis of a 300 MW Lignite Thermoelectric Power Plant
,”
Energy
,
75
, pp.
304
311
. 10.1016/j.energy.2014.07.079
8.
Boyaghchi
,
F. A.
, and
Molaie
,
H.
,
2015
, “
Sensitivity Analysis of Exergy Destruction in a Real Combined Cycle Power Plant Based on Advanced Exergy Method
,”
Energy Convers. Manage.
,
99
, pp.
374
386
. 10.1016/j.enconman.2015.04.048
9.
Koroglu
,
T.
, and
Sogut
,
O. S.
,
2018
, “
Conventional and Advanced Exergy Analyses of a Marine Steam Power Plant
,”
Energy
,
163
, pp.
392
403
. 10.1016/j.energy.2018.08.119
10.
Zhang
,
H. S.
,
Zhao
,
H. B.
, and
Li
,
Z. L.
,
2016
, “
Performance Analysis of the Coal-Fired Power Plant With Combined Heat and Power (CHP) Based on Absorption Heat Pumps
,”
J. Energy Inst.
,
89
(
1
), pp.
70
80
. 10.1016/j.joei.2015.01.009
11.
Khoodaruth
,
A.
, and
Aljundi
,
I. H.
,
2015
, “
Performance Analysis of a Grate Stoker Coal-Fired Power Plant Based on the Second Law of Thermodynamics
,”
Int. J. Exergy
,
18
(
1
), pp.
84
103
. 10.1504/IJEX.2015.072058
12.
Karmakar
,
S.
, and
Kolar
,
A. K.
,
2013
, “
Thermodynamic Analysis of High-Ash Coal-Fired Power Plant With Carbon Dioxide Capture
,”
Int. J. Energy Res.
,
37
(
6
), pp.
522
534
. 10.1002/er.1931
13.
Suresh
,
M. V. J. J.
,
Reddy
,
K. S.
, and
Kolar
,
A. K.
,
2010
, “
3-E Analysis of Advanced Power Plants Based on High Ash Coal
,”
Int. J. Energy Res.
,
34
(
8
), pp.
716
735
.
14.
Erdem
,
H. H.
,
Akkaya
,
A. V.
,
Cetin
,
B.
,
Dagdas
,
A.
,
Sevilgen
,
S. H.
,
Sahin
,
B.
, and
Atas
,
S.
,
2009
, “
Comparative Energetic and Exergetic Performance Analyses for Coal-Fired Thermal Power Plants in Turkey
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2179
2186
. 10.1016/j.ijthermalsci.2009.03.007
15.
Aljundi
,
I. H.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Jordan
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
324
328
. 10.1016/j.applthermaleng.2008.02.029
16.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2004
, “
Effect of Varying Dead-State Properties on Energy and Exergy Analyses of Thermal Systems
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
121
133
. 10.1016/j.ijthermalsci.2003.05.004
17.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Thermoeconomic Analysis of Power Plants: An Application to a Coal Fired Electrical Generating Station
,”
Energy Convers. Manage.
,
44
(
17
), pp.
2743
2761
. 10.1016/S0196-8904(03)00047-5
18.
Kariman
,
H.
,
Hoseinzadeh
,
S.
, and
Heyns
,
P. S.
,
2019
, “
Energetic and Exergetic Analysis of Evaporation Desalination System Integrated With Mechanical Vapor Recompression Circulation
,”
Case Stud. Therm. Eng.
,
16
, p.
100548
. 10.1016/j.csite.2019.100548
19.
Kariman
,
H.
,
Hoseinzadeh
,
S.
,
Shirkhani
,
A.
,
Heyns
,
P. S.
, and
Wannenburg
,
J.
,
2020
, “
Energy and Economic Analysis of Evaporative Vacuum Easy Desalination System With Brine Tank
,”
J. Therm. Anal. Calorim
.,
140
(
4
), pp.
1935
1944
. 10.1007/s10973-019-08945-8
20.
Hoseinzadeh
,
S.
,
Yargholi
,
R.
,
Kariman
,
H.
, and
Heyns
,
P. S.
, “
Exergeoeconomic Analysis and Optimization of Reverse Osmosis Desalination Integrated With Geothermal Energy
,”
Environ. Prog. Sustainable Energy
,
39
(
5
), p.
e13405
. 10.1002/ep.13405
21.
Ahmadi
,
A.
,
Assad
,
M. E. H.
,
Jamali
,
D. H.
,
Kumar
,
R.
,
Li
,
Z. X.
,
Salameh
,
T.
, and
Ehyaei
,
M. A.
,
2020
, “
Applications of Geothermal Organic Rankine Cycle for Electricity Production
,”
J. Cleaner Prod.
,
274
, p.
122950
. 10.1016/j.jclepro.2020.122950
22.
Ehyaei
,
M. A.
,
Ahmadi
,
A.
,
Assad
,
M. E. H.
, and
Rosen
,
M. A.
,
2020
, “
Investigation of an Integrated System Combining an Organic Rankine Cycle and Absorption Chiller Driven by Geothermal Energy: Energy, Exergy, and Economic Analyses and Optimization
,”
J. Cleaner Prod.
,
258
, p.
120780
. 10.1016/j.jclepro.2020.120780
23.
Talebizadehsardari
,
P.
,
Ehyaei
,
M. A.
,
Ahmadi
,
A.
,
Jamali
,
D. H.
,
Shirmohammadi
,
R.
,
Eyvazian
,
A.
, and
Rosen
,
M. A.
,
2020
, “
Energy, Exergy, Economic, Exergoeconomic, and Exergoenvironmental (5E) Analyses of a Triple Cycle With Carbon Capture
,”
J. CO2 Util.
,
41
, p.
101258
. 10.1016/j.jcou.2020.101258
24.
Hoseinzadeh
,
S.
,
Ghasemiasl
,
R.
,
Javadi
,
M. A.
, and
Heyns
,
P. S.
,
2020
, “
Performance Evaluation and Economic Assessment of a Gas Power Plant With Solar and Desalination Integrated Systems
,”
Desalin. Water Treat.
,
174
, pp.
11
25
. 10.5004/dwt.2020.24850
25.
Suresh
,
M. V. J. J.
,
Reddy
,
K. S.
, and
Kolar
,
A. K.
, “
4-E (Energy, Exergy, Environment, and Economic) Analysis of Solar Thermal Aided Coal-Fired Power Plants
,”
Energy Sustainable Dev.
,
14
(
4
), pp.
267
279
. 10.1016/j.esd.2010.09.002
26.
Sanjay
, and
Prasad
,
B. N.
,
2013
, “
Energy and Exergy Analysis of Intercooled Combustion-Turbine Based Combined Cycle Power Plant
,”
Energy
,
59
, pp.
277
284
. 10.1016/j.energy.2013.06.051
27.
Yilmazoglu
,
M. Z.
, and
Erdogan
,
A. A.
,
2019
, “
Increasing Exergy Efficiency of a Coal-Fired Thermal Power Plant Via Feedwater-Heating Repowering Application
,”
Int. J. Exergy
,
29
(
2–4
), pp.
263
281
. 10.1504/IJEX.2019.100366
28.
Kariman
,
H.
,
Hoseinzadeh
,
S.
,
Heyns
,
P. S.
, and
Sohani
,
A.
,
2020
, “
Modeling and Exergy Analysis of Domestic MED Desalination With Brine Tank, Desalination and Water Treatment
,”
Desalin. Water Treat.
,
197
, pp.
1
13
. 10.5004/dwt.2020.26105
29.
Spitz
,
N.
,
Saveliev
,
R.
,
Perelman
,
M.
,
Korytni
,
E.
,
Chudnovsky
,
B.
,
Talanker
,
A.
, and
Bar-Ziv
,
E.
,
2008
, “
Firing a Sub-Bituminous Coal in Pulverized Coal Boilers Configured for Bituminous Coals
,”
Fuel
,
87
(
8–9
), pp.
1534
1542
. 10.1016/j.fuel.2007.08.020
30.
Çengel
,
Y.
, and
Boles
,
M.
,
2015
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Education
, 8th ed., p.
765
.
You do not currently have access to this content.