Abstract

This paper proposes a novel unglazed photovoltaic/thermal (PV/T) system completely covered by photovoltaic (PV) cells, the system can significantly increase the power generation, and unglazed structure helps to improve the performance of the electricity. The variable flow experiment shows that the average value of the unglazed PV/T daily electrical and thermal efficiencies can reach 18.62% and 26.86%, respectively, and the corresponding exergy and energy saving efficiencies are 20.51% and 73.76%. Compared with PV module, the electrical efficiency of the PV/T module is increased by 11.54%. As for the large heat loss of unglazed PV/T, a series or parallel system composed of PV/T modules was built to improve heat collection capacity. The results show that the electrical and thermal energy of the series or parallel system increases significantly; temperature of water can be increased by 20 °C when the water volume is more than doubled. However, the electrical efficiency of the system is lower than that of the single PV/T, and the maximum value is 17.32%. Combined with economic analysis, the unglazed PV/T system with higher exergy efficiency and the cost is lower than that of glazed PV/T.

References

1.
Wu
,
L.
,
Zhao
,
B.
,
Ao
,
X.
,
Yang
,
H.
,
Ren
,
X.
,
Yu
,
Q.
,
Guo
,
K.
,
Hu
,
M.
, and
Pei
,
G.
,
2021
, “
Performance Analysis of the Aerogel-Based PV/T Collector: A Numerical Study
,”
Sol. Energy
,
228
(
11
), pp.
339
348
.
2.
Joshi
,
S. S.
, and
Dhoble
,
A. S.
,
2018
, “
Photovoltaic-Thermal Systems (PVT): Technology Review and Future Trends
,”
Renew. Sustain. Energy Rev.
,
92
(
9
), pp.
848
882
.
3.
Yazdanifard
,
F.
, and
Ameri
,
M.
,
2018
, “
Exergetic Advancement of Photovoltaic/Thermal Systems (PV/T): A Review
,”
Renew. Sustain. Energy Rev.
,
97
(
12
), pp.
529
553
.
4.
Sainthiya
,
H.
, and
Beniwal
,
N. S.
,
2019
, “
Efficiency Enhancement of Photovoltaic/Thermal Module Using Front Surface Cooling Technique in Winter and Summer Seasons: An Experimental Investigation
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
091201
.
5.
Chow
,
T. T.
,
He
,
W.
, and
Ji
,
J.
,
2007
, “
An Experimental Study of Façade-Integrated Photovoltaic/Water-Heating System
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
37
45
.
6.
Chen
,
H.
,
Ji
,
J.
,
Pei
,
G.
,
Yang
,
J.
, and
Zhang
,
Y.
,
2018
, “
Experimental and Numerical Comparative Investigation on a Concentrating Photovoltaic System
,”
J. Cleaner Prod.
,
174
(
2
), pp.
1288
1298
.
7.
Kong
,
D.
,
Wang
,
Y.
,
Li
,
M.
,
Keovisar
,
V.
,
Huang
,
M.
, and
Yu
,
Q.
,
2020
, “
Experimental Study of Solar Photovoltaic/Thermal (PV/T) Air Collector Drying Performance
,”
Sol. Energy
,
208
(
9
), pp.
978
989
.
8.
Zhang
,
B.
,
Lv
,
J.
,
Yang
,
H.
,
Li
,
T.
, and
Ren
,
S.
,
2015
, “
Performance Analysis of a Heat Pipe PV/T System With Different Circulation Tank Capacities
,”
Appl. Therm. Eng.
,
87
(
8
), pp.
89
97
.
9.
Aste
,
N.
,
del Pero
,
C.
, and
Leonforte
,
F.
,
2014
, “
Water Flat Plate PV–Thermal Collectors: A Review
,”
Sol. Energy
,
102
(
4
), pp.
98
115
.
10.
Chow
,
T. T.
,
Pei
,
G.
,
Fong
,
K. F.
,
Lin
,
Z.
,
Chan
,
A. L. S.
, and
Ji
,
J.
,
2009
, “
Energy and Exergy Analysis of Photovoltaic–Thermal Collector With and Without Glass Cover
,”
Appl. Energy
,
86
(
3
), pp.
310
316
.
11.
Asanakham
,
A.
, and
Deethayat
,
T.
,
2020
, “
Performance Analysis of PV/T Modules With and Without Glass Cover and Effect of Mass Flow Rate on Electricity and Hot Water Generation
,”
Energy Rep.
,
6
(
2
), pp.
558
564
.
12.
Yu
,
Y.
,
Long
,
E.
,
Chen
,
X.
, and
Yang
,
H.
,
2019
, “
Testing and Modelling an Unglazed Photovoltaic Thermal Collector for Application in Sichuan Basin
,”
Appl. Energy
,
242
(
5
), pp.
931
941
.
13.
Kazemian
,
A.
,
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Effect of Glass Cover and Working Fluid on the Performance of Photovoltaic Thermal (PVT) System: An Experimental Study
,”
Sol. Energy
,
173
(
10
), pp.
1002
1010
.
14.
Gao
,
Y.
,
Hu
,
G.
,
Zhang
,
Y.
, and
Zhang
,
X.
,
2022
, “
An Experimental Study of a Hybrid Photovoltaic Thermal System Based on Ethanol Phase Change Self-Circulation Technology: Energy and Exergy Analysis
,”
Energy
,
238
(
1
), p.
121663
.
15.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2017
, “
Review on Series Connected Photovoltaic Thermal (PVT) Systems: Analytical and Experimental Studies
,”
Sol. Energy
,
150
(
7
), pp.
96
127
.
16.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Analysis of PV/T Flat Plate Water Collectors Connected in Series
,”
Sol. Energy
,
83
(
9
), pp.
1485
1498
.
17.
Shyam, Tiwari
,
G. N.
,
Fischer
,
O.
,
Mishra
,
R. K.
, and
Al-Helal
,
I. M.
,
2016
, “
Performance Evaluation of N-Photovoltaic Thermal (PVT) Water Collectors Partially Covered by Photovoltaic Module Connected in Series: An Experimental Study
,”
Sol. Energy
,
134
(
9
), pp.
302
313
.
18.
Tiwari
,
S.
, and
Tiwari
,
G. N.
,
2017
, “
Energy and Exergy Analysis of a Mixed-Mode Greenhouse-Type Solar Dryer, Integrated With Partially Covered N-PVT Air Collector
,”
Energy
,
128
(
6
), pp.
183
195
.
19.
Dubey
,
S.
,
Solanki
,
S. C.
, and
Tiwari
,
A.
,
2009
, “
Energy and Exergy Analysis of PV/T Air Collectors Connected in Series
,”
Energy Build.
,
41
(
8
), pp.
863
870
.
20.
Ji
,
J.
,
Lu
,
J.-P.
,
Chow
,
T.-T.
,
He
,
W.
, and
Pei
,
G.
,
2007
, “
A Sensitivity Study of a Hybrid Photovoltaic/Thermal Water-Heating System With Natural Circulation
,”
Appl. Energy
,
84
(
2
), pp.
222
237
.
21.
Bayrak
,
F.
,
Ertürk
,
G.
, and
Oztop
,
H. F.
,
2017
, “
Effects of Partial Shading on Energy and Exergy Efficiencies for Photovoltaic Panels
,”
J. Cleaner Prod.
,
164
(
10
), pp.
58
69
.
22.
Gill
,
R. S.
,
Singh
,
S.
, and
Singh
,
P. P.
,
2012
, “
Low Cost Solar Air Heater
,”
Energy Convers. Manage.
,
57
(
5
), pp.
131
142
.
23.
Zhu
,
T. T.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
, and
Deng
,
Y. C.
,
2015
, “
Experimental Study on the Thermal Performance and Pressure Drop of a Solar Air Collector Based on Flat Micro-Heat Pipe Arrays
,”
Energy Convers. Manage.
,
94
(
4
), pp.
447
457
.
24.
Gagliano
,
A.
,
Tina
,
G. M.
,
Aneli
,
S.
, and
Nizetic
,
S.
,
2019
, “
Comparative Assessments of the Performances of PV/T and Conventional Solar Plants
,”
J. Cleaner Prod.
,
219
, pp.
304
315
.
25.
Li
,
M.
,
Zhong
,
D.
,
Ma
,
T.
,
Kazemian
,
A.
, and
Gu
,
W.
,
2020
, “
Photovoltaic Thermal Module and Solar Thermal Collector Connected in Series: Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
206
(
2
), p. 112749.
26.
Aberoumand
,
S.
,
Ghamari
,
S.
, and
Shabani
,
B.
,
2018
, “
Energy and Exergy Analysis of a Photovoltaic Thermal (PV/T) System Using Nanofluids: An Experimental Study
,”
Sol. Energy
,
165
(
5
), pp.
167
177
.
27.
Wu
,
S.-Y.
,
Chen
,
C.
, and
Xiao
,
L.
,
2018
, “
Heat Transfer Characteristics and Performance Evaluation of Water-Cooled PV/T System With Cooling Channel Above PV Panel
,”
Renew. Energy
,
125
(
9
), pp.
936
946
.
28.
Mousavi
,
S.
,
Kasaeian
,
A.
,
Shafii
,
M. B.
, and
Jahangir
,
M. H.
,
2018
, “
Numerical Investigation of the Effects of a Copper Foam Filled With Phase Change Materials in a Water-Cooled Photovoltaic/Thermal System
,”
Energy Convers. Manage.
,
163
(
5
), pp.
187
195
.
You do not currently have access to this content.