Abstract

The proton exchange membrane fuel cell (PEMFC) best exploitation needs to be based on reliability and fault tolerant control. One of the issues to fulfill this objective is ensuring high reliability indexes of the associated DC/DC converter, which is indispensable in practice. Three-stage interleaved boost converter is proposed in this context with a reliability-based reconfiguration control. The proposed control approach is passivity based, it is robust against high-temperature variations and load perturbations. However, this article proposes a novel method that adapts the reference current by a linear transformation. The fault tolerant control manages the open circuit failure to adapt the control algorithm to two-stage converter reconfigured structure. The matlab/simulink-based simulations show the effectiveness of the proposed control scheme as well as the reconfiguration method, which can give a technical improvement in the exploitation of PEMFC power supplies in the presence of faults and perturbations.

References

1.
Obara
,
S.
, and
Tanno
,
I.
,
2009
, “
Installation Plan of a Fuel Cell Microgrid System Optimized by Maximizing Power Generation Efficiency
,”
ASME J. Energy Res. Technol.
,
131
(
4
), p.
042601
.
2.
Gunes
,
M. B.
, and
Ellis
,
M. W.
,
2003
, “
Evaluation of Energy, Environmental, and Economic Characteristics of Fuel Cell Combined Heat and Power Systems for Residential Applications
,”
ASME J. Energy Res. Technol.
,
125
(
3
), pp.
208
220
.
3.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Al Hamad
,
S.
,
Saadeh
,
W.
, and
Amano
,
R. S.
,
2021
, “
Performance of Hybrid Renewable Energy Power System for a Residential Building
,”
ASME J. Energy Res. Technol.
,
144
(
4
), p.
041301
.
4.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
,
2002
, “
Proton Exchange Membrane Fuel Cell System Model for Automotive Vehicle Simulation and Control
,”
ASME J. Energy Res. Technol.
,
124
(
1
), pp.
20
27
.
5.
Obara
,
S.
, and
Kudo
,
K.
,
2005
, “
Study of a Small-Scale Fuel Cell Cogeneration System With Methanol Steam Reforming Considering Partial Load and Load Fluctuation
,”
ASME J. Energy Res. Technol.
,
127
(
4
), pp.
265
271
.
6.
Lasek
,
P.
, and
Stepien
,
M.
,
2021
, “
Measurement and Analysis of Power Losses in Sintered Cores for Power Electronic Devices in Renewable Energy Systems
,”
ASME J. Energy Res. Technol.
,
144
(
5
), p.
050907
.
7.
Wang
,
Y.
,
Li
,
J.
,
Tao
,
Q.
,
Bargal
,
M. H. S.
,
Yu
,
M.
,
Yuan
,
X.
, and
Su
,
C.
,
2019
, “
Thermal Management System Modeling and Simulation of a Full-Powered Fuel Cell Vehicle
,”
ASME J. Energy Res. Technol.
,
142
(
6
), p.
061304
.
8.
Yue
,
M.
,
Lambert
,
H.
,
Pahon
,
E.
,
Roche
,
R.
,
Jemei
,
S.
, and
Hissel
,
D.
,
2021
, “
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
,”
Renewable Sustainable Energy Rev.
,
146
, p.
111180
.
9.
İnci
,
M.
,
Büyük
,
M.
,
Demir
,
M. H.
, and
İlbey
,
G.
,
2021
, “
A Review and Research on Fuel Cell Electric Vehicles: Topologies, Power Electronic Converters, Energy Management Methods, Technical Challenges, Marketing and Future Aspects
,”
Renewable Sustainable Energy Rev.
,
137
, p.
110648
.
10.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Qandil
,
H. D.
,
Al- Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
A Stand- Alone Hybrid Photovoltaic, Fuel Cell, and Battery System: Case Studies in Jordan
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
111201
.
11.
Chakraborty
,
S.
,
Vu
,
H.-N.
,
Hasan
,
M. M.
,
Tran
,
D.- D.
,
Baghdadi
,
M. E.
, and
Hegazy
,
O.
,
2019
, “
Dcdc Converter Topologies for Electric Vehicles, Plug-In Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends
,”
Energies
,
12
(
8
), p.
1569
.
12.
Kumar
,
K.
,
Tiwari
,
R.
,
Varaprasad
,
P. V.
,
Babu
,
C.
, and
Reddy
,
K. J.
,
2021
, “
Performance Evaluation of Fuel Cell Fed Electric Vehicle System With Reconfigured Quadratic Boost Converter
,”
Int. J. Hydrogen Energy.
,
46
(
11
), pp.
8167
8178
.
13.
Srinivasan
,
S.
,
Tiwari
,
R.
,
Krishnamoorthy
,
M.
,
Lalitha
,
M.
, and
Raj
,
K.
,
2021
, “
Neural Network Based Mppt Control With Reconfigured Quadratic Boost Converter for Fuel Cell Application
,”
Int. J. Hydrogen Energy.
,
46
(
9
), pp.
6709
6719
.
14.
Jyotheeswara Reddy
,
K.
, and
Sudhakar
,
N.
,
2018
, “
A New RBFN Based Mppt Controller for Gridconnected Pemfc System With High Step-Up Threephase IBC
,”
Int. J. Hydrogen Energy.
,
43
(
37
), pp.
17835
17848
.
15.
Guilbert
,
D.
,
N’Diaye
,
A.
,
Gaillard
,
A.
, and
Djerdir
,
A.
,
2016
, “
Fuel Cell Systems Reliability and Availability Enhancement by Developing a Fast and Efficient Power Switch Open-circuit Fault Detection Algorithm in Interleaved DC/DC Boost Converter Topologies
,”
Int. J. Hydrogen Energy.
,
41
(
34
), pp.
15505
15517
.
16.
Arango
,
E.
,
Ramos-Paja
,
C. A.
,
Calvente
,
J.
,
Giral
,
R.
, and
Serna
,
S.
,
2012
, “
Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design
,”
Energies
,
5
(
11
), pp.
4590
4623
.
17.
Harinee
,
M.
,
Nagarajan
,
V. S.
,
Dimple
,
Seyezhai
,
R.
, and
Mathur
,
B. L.
,
2011
, “
Modeling and Design of Fuel Cell Based Two Phase Interleaved Boost Converter
,”
2011 1st International Conference on Electrical Energy Systems
,
Chennai, India
,
Jan. 3–5
, pp.
72
77
.
18.
Habib
,
M.
,
Khoucha
,
F.
, and
Harrag
,
A.
,
2017
, “
Ga-Based Robust Lqr Controller for Interleaved Boost DC–DC Converter Improving Fuel Cell Voltage Regulation
,”
Electr. Power Syst. Res.
,
152
, pp.
438
456
.
19.
Thounthong
,
P.
,
Mungporn
,
P.
,
Guilbert
,
D.
,
Takorabet
,
N.
,
Pierfederici
,
S.
,
Nahid-Mobarakeh
,
B.
,
Hu
,
Y.
,
Bizon
,
N.
,
Huangfu
,
Y.
, and
Kumam
,
P.
,
2021
, “
Design and Control of Multiphase Interleaved Boost Converters-Based on Differential Flatness Theory for PEM Fuel Cell Multi-Stack Applications
,”
Int. J. Electric. Power Energy Syst.
,
124
, p.
106346
.
20.
Dali
,
A.
,
Abdelmalek
,
S.
,
Bakdi
,
A.
, and
Bettayeb
,
M.
,
2021
, “
A Novel Effective Nonlinear State Observer Based Robust Nonlinear Sliding Mode Controller for a 6 kw Proton Exchange Membrane Fuel Cell Voltage Regulation
,”
Sustain. Energy Technolog. Assessments
,
44
, p.
100996
.
21.
Barhoumi
,
E. M.
,
Ben Belgacem
,
I.
,
Khiareddine
,
A.
,
Zghaibeh
,
M.
, and
Tlili
,
I.
,
2018
, “
A Neural Network-Based Four Phases Interleaved Boost Converter for Fuel Cell System Applications
,”
Energies
,
11
(
12
), p.
3423
.
22.
Zaidi
,
A.
,
Charaabi
,
A.
,
Barambones
,
O.
, and
Zanzouri
,
N.
,
2021
, “
Robust Passivity-Based Control Scheme for 1.26 kw Proton Exchange Membrane Fuel Cell Under Temperature and Load Variations
,”
ASME J. Electrochem. Energy. Convers. Storage.
,
18
(
4
), p.
040906
.
23.
Guilbert
,
D.
,
Gaillard
,
A.
,
N’Diaye
,
A.
, and
Djerdir
,
A.
,
2015
, “
Fault-Tolerant Control for Pemfc and Its DC/DC Converter
,”
2015 5th International Youth Conference on Energy (IYCE)
,
Pisa, Italy
,
May 27–30
, pp.
1
6
.
24.
AUBRY
,
J.
,
Steiner
,
N. Y.
,
Morando
,
S.
,
Zerhouni
,
N.
, and
Hissel
,
D.
,
2020
, “
Fault Tolerant Control of a Proton Exchange Membrane Fuel Cell Based on a Modified Failure Mode and Effect Analysis
,”
2020 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Gijón, Spain
,
Oct. 26–29
, pp.
1
5
.
25.
Yang
,
D.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2020
, “
Robust Fault Diagnosis and Fault Tolerant Control for PEMFC System Based on an Augmented LPV Observer
,”
Int. J. Hydrogen. Energy.
,
45
(
24
), pp.
13508
13522
.
26.
Lebreton
,
C.
,
Benne
,
M.
,
Damour
,
C.
,
Yousfi- Steiner
,
N.
,
Grondin-Perez
,
B.
,
Hissel
,
D.
, and
Chabriat
,
J.-P.
,
2015
, “
Fault Tolerant Control Strategy Applied to PEMFC Water Management
,”
Int. J. Hydrogen. Energy.
,
40
(
33
), pp.
10636
10646
.
27.
Ocampo-Martinez
,
C.
,
Sánchez-Pe na
,
R.
,
Bianchi
,
F.
, and
Ingimundarson
,
A.
,
2018
, “
Data-Driven Fault Diagnosis and Robust Control: Application to PEM Fuel Cell Systems
,”
J. Robust. Nonlinear. Control.
,
28
(
12
), pp.
3713
3727
.
28.
Bressel
,
M.
,
Hilairet
,
M.
,
Hissel
,
D.
, and
Ould Bouamama
,
B.
,
2020
, “
Model-Based Aging Tolerant Control With Power Loss Prediction of Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy.
,
45
(
19
), pp.
11242
11254
.
29.
Badea
,
N. I.
,
2021
, “
Hydrogen as Energy Sources–Basic Concepts
,”
Energies
,
14
(
18
), p.
5783
.
30.
Sujatha
,
M.
, and
Parvathy
,
D.
,
2017
, “
Reliability Analysis of Boost Converter Used for Solar PV System
,”
J. Adv. Res. Dyn. Control Syst.
,
11
(
Special Issue
), pp.
703
709
.
31.
Rahimi
,
T.
,
Hosseini
,
S. H.
,
Sabahi
,
M.
,
Gharehpetian
,
G. B.
, and
Abapour
,
M.
,
2019
, “
Reliability Evaluation of a Fault-Tolerant Three-Phase Interleaved DC-DC Boost Converter
,”
Trans. Inst. Measure. Control
,
41
(
5
), pp.
1278
1289
.
32.
Alam
,
M. K.
, and
Khan
,
F. H.
,
2014
, “
Reliability Analysis and Performance Degradation of a Boost Converter
,”
IEEE. Trans. Ind. Appl.
,
50
(
6
), pp.
3986
3994
.
33.
MIL-HDBK-217F
,
Dec
.
1991
, “
Military Handbook: Reliability Prediction of Electronic Equipment
,”
Department of Defense
,
WA
,
Technical Report
.
34.
Aghdam
,
F. H.
, and
Abapour
,
M.
,
2016
, “
Reliability and Cost Analysis of Multistage Boost Converters Connected to PV Panels
,”
IEEE J. Photovoltaics
,
6
(
4
), pp.
981
989
.
35.
Sakulchotruangdet
,
S.
, and
Khwan-on
,
S.
,
2016
, “
Three-Phase Interleaved Boost Converter With Fault Tolerant Control Strategy for Renewable Energy System Applications
,”
Procedia Comput. Sci.
,
86
, pp.
353
356
.
36.
Khare
,
V.
,
Nema
,
S.
, and
Baredar
,
P.
,
2019
, “
Reliability Analysis of Hybrid Renewable Energy System by Fault Tree Analysis
,”
Energy Environ.
,
30
(
3
), pp.
542
555
.
37.
Singh
,
S. S.
, and
Fernandez
,
E.
,
2018
, “
Reliability Assessment of a Remote Hybrid Renewable Energy System Using Monte Carlo Simulation
,”
Int. J. Renew. Energy Technol.
,
9
(
3
), p.
368
.
38.
Abdi
,
B.
,
Ranjbar
,
A.
,
Gharehpetian
,
G.
, and
Milimonfared
,
J.
,
2009
, “
Reliability Considerations for Parallel Performance of Semiconductor Switches in High-Power Switching Power Supplies
,”
IEEE. Trans. Ind. Electron.
,
56
(
6
), pp.
2133
2139
.
39.
Behjati
,
H.
, and
Davoudi
,
A.
,
2013
, “
Reliability Analysis Framework for Structural Redundancy in Power Semiconductors
,”
IEEE. Trans. Ind. Electron.
,
60
(
10
), pp.
4376
4386
.
40.
Sakly
,
J.
,
Bennani-Ben Abdelghani
,
A.
,
Slama- Belkhodja
,
I.
, and
Sammoud
,
H.
,
2017
, “
Reconfigurable DC/DC Converter for Efficiency and Reliability Optimization
,”
IEEE J. Emerg. Select. Topics Power Electron.
,
5
(
3
), pp.
1216
1224
.
41.
Dhople
,
S. V.
,
Davoudi
,
A.
,
Domínguez-García
,
A. D.
, and
Chapman
,
P. L.
,
2012
, “
A Unified Approach to Reliability Assessment of Multiphase DC–DC Converters in Photovoltaic Energy Conversion Systems
,”
IEEE Trans. Power Electron.
,
27
(
2
), pp.
739
751
.
42.
Jarabicová
,
M.
, and
Kaščák
,
S.
,
2019
, “
The Parametric Simulation of the Interleaved Boost Converter for the Electric Transport Vehicle
,”
Transport. Res. Procedia
,
40
, pp.
287
294
.
43.
Khosroshahi
,
A.
,
Abapour
,
M.
, and
Sabahi
,
M.
,
2015
, “
Reliability Evaluation of Conventional and Interleaved DC–DC Boost Converters
,”
IEEE Trans. Power Electron.
,
30
(
10
), pp.
5821
5828
.
44.
Ortega
,
R.
,
Loría
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramírez
,
H.
,
1998
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications Communications and Control Engineering
,
Springer London
,
London
.
45.
Zaidi
,
A.
,
Charaabi
,
A.
, and
Zanzouri
,
N.
,
2017
, “
Adaptive Passivity-Based Sliding Mode Control of a Boost Converter With Parasitic Parameters
,”
5th International Conference on Control Engineering&Information Technology (CEIT-2017) Proceeding of Engineering and Technology–PET
,
Tunisia
,
Dec. 17–19
, pp.
44
49
.
46.
Sira Ramirez
,
H. J.
, and
Silva-Ortigoza
,
R.
,
2006
,
Control Design Techniques in Power Electronics Devices
,
Springer
,
London
.
47.
Zaidi
,
A.
,
Tagina
,
M.
, and
Bouamama
,
B. O.
,
2020
, “
Improvement of Bond Graph Model based Diagnosis With Bayesian Networks Approach
,”
Int. J. Simulat. Syst. Sci. Technol.
,
12
(
5
).
You do not currently have access to this content.