Abstract

Experiments were performed to find out the effect of alkali, alkali-earth, and transition metallic additives on thermal, luminous, IR, and total radiative properties of natural gas flame. A total of 25 mL of 0.5 M alkali salts of NaNO3 and KNO3, alkali-earth salts of Ca(NO3)2, Ba(NO3)2, and Sr(NO3)2 and transition nitrate salts of Cu(NO3)2 and Mn(NO3)2 (Merck company) were prepared, and flame tests were done on each solution by using a Bunsen burner with the equivalence ratio of 1.05, which is close to the condition of stoichiometric air–fuel mixing. The optical characteristics of flame were measured in visible and infrared radiation (IR) spectrums by a TES-1332A luminance meter, BOMEM FTIR, and IR flame photography technique. Also, the total radiation was gauged by a HFP01 sensor. The results indicated that, in general, due to the increased rate of nucleation of intermediate soot particles, the flame in the presence of alkali metal additives has higher total, luminous, and IR radiation than in the presence of other metal additives. Also, the metallic additives do not significantly change the flame temperature. The results also revealed that although all metallic additives enhance the luminous radiation of flame, which is due to chemiluminescence phenomenon or atomic emission, luminous radiation of metal additives is negligible in comparison with their radiation in IR wavelengths. Furthermore, the results show that the boiling temperature of metallic salt solutions has a greater impact on flame luminosity than their ionization energy does.

References

1.
Yaϊci
,
W.
, and
Ribberink
,
H.
,
2021
, “
Feasibility Study on Medium- and Heavy-Duty Compressed Renewable/Natural Gas Vehicles in Canada
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p. 090907.
2.
Yaϊci
,
W.
, and
Longo
,
M.
,
2022
, “
Assessment of Renewable Natural Gas Refueling Stations for Heavy-Duty Vehicles
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p. 070901.
3.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2017
, “
An Experimental Study on Thermal and Radiative Characteristics of Natural Gas Flame in Different Equivalence Ratios by Chemiluminescence and IR Photography Methods
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
126
131
.
4.
Andersson
,
K.
, and
Johnsson
,
F.
,
2007
, “
Flame and Radiation Characteristics of Gas-Fired O2/CO2 Combustion
,”
Fuel
,
86
(
5–6
), pp.
656
668
.
5.
Ichikawa
,
Y.
,
Otawara
,
Y.
,
Kobayashi
,
H.
,
Ogami
,
Y.
,
Kudo
,
T.
,
Okuyama
,
M.
, and
Kadowaki
,
S.
,
2011
, “
Flame Structure and Radiation Characteristics of CO/H2/CO2/Air Turbulent Premixed Flames at High Pressure
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1543
1550
.
6.
Mehta
,
R. S.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2010
, “
Radiation Characteristics and Turbulence-Radiation Interactions in Sooting Turbulent Jet Flames
,”
Combus. Theory Model.
,
14
(
1
), pp.
105
124
.
7.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2017
, “
An Experimental Study of Optimum Angle of air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
.
8.
Gorog
,
J. P.
,
Brimacombe
,
J. K.
, and
Adams
,
T. N.
,
1981
, “
Radiative Heat Transfer in Rotary Kilns
,”
Metall. Trans. B
,
12
(
1
), pp.
55
70
.
9.
Centeno
,
F. R.
,
Dasilva
,
C. V.
, and
Franca
,
F. H. R.
,
2014
, “
The Influence of Gas Radiation on the Thermal Behavior of a 2D Axisymmetric Turbulent Non-Premixed Methane–Air Flame
,”
Energy Convers. Manage.
,
79
, pp.
405
414
.
10.
Paul
,
S. C.
, and
Paul
,
M. C.
,
2014
, “
Radiative Heat Transfer During Turbulent Combustion Process
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
1
6
.
11.
Gruenberger
,
T. M.
,
Moghiman
,
M.
,
Bowen
,
P. J.
, and
Syred
,
N.
,
2002
, “
Dynamic of Soot Formation by Turbulent Combustion and Thermal Decomposition of Natural Gas
,”
J. Combust. Sci. Technol.
,
174
(
5–6
), pp.
67
86
.
12.
Farias
,
T. L.
,
Carvalho
,
M. G.
, and
Köylü
Ü.Ö.
,
1998
, “
Radiative Heat Transfer in Soot Containing Combustion Systems With Aggregation
,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2581
2587
.
13.
Pourhoseini
,
S. H.
,
2017
, “
A Novel Configuration of Natural Gas Diffusion Burners to Enhance Optical, Thermal and Radiative Characteristics of Flame and Reduce NOx Emission
,”
Energy
,
132
, pp.
41
48
.
14.
Koylu
,
U. O.
, and
Faeth
,
G. M.
,
1991
, “
Carbon Monoxide and Soot Emissions From Liquid Fueled Buoyant Tubulent Diffusion Flames
,”
Combust. Flame
,
87
(
1
), pp.
61
76
.
15.
Williams
,
T. C.
,
Shaddix
,
C. R.
,
Jensen
,
K. A.
, and
Suo-Anttila
,
J. M.
,
2007
, “
Measurement of the Dimensionless Extinction Coefficient of Soot Within Laminar Diffusion Flames
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1616
1630
.
16.
Zhao
,
J.
,
Maohua
,
Y.
,
Guibin
,
Y.
, and
Jingmin
,
D.
,
2005
, “
Development of Infrared Spectral Radiation Measurement System of a Non-Luminous Flame
,”
Chin. Opt. Lett.
,
3
(
9
), pp.
549
551
.
17.
Pourhoseini
,
S. H.
,
2017
, “
A Comparative Exploration of Enhancing Thermal Characteristics of Natural Gas Flame by Synchronous Combustion Technique
,”
Heat Transf. Asian Res.
,
46
(
3
), pp.
237
250
.
18.
Song
,
H.
, and
Jacobs
,
T. J.
,
2014
, “
The Influence of Soot Radiation on NO Emission in Practical Biodiesel Combustion
,”
Fuel
,
128
, pp.
281
287
.
19.
Viskanta
,
R.
, and
Mengüç
,
M. P.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci
,
13
(
2
), pp.
97
160
.
20.
Johansson
,
R.
,
Leckner
,
B.
,
Andersson
,
K.
, and
Johansson
,
F.
,
2013
, “
Influence of Particle and Gas Radiation in Oxy-Fuel Combustion
,”
Int. J. Heat Mass Transfer
,
65
, pp.
143
152
.
21.
Bäckström
,
D.
,
Johansson
,
R.
,
Andersson
,
K.
,
Johansson
,
F.
,
Clausen
,
S.
, and
Fateev
,
A.
,
2014
, “
Measurement and Modeling of Particle Radiation in Coal Flames
,”
Energy Fuel
,
28
(
3
), pp.
2199
2210
.
22.
Yang
,
W.
, and
Blasiak
,
W.
,
2005
, “
Numerical Study of Fuel Temperature Influence on Single Gas Jet Combustion in Highly Preheated and Oxygen Deficient Air
,”
Energy
,
30
(
2–4
), pp.
385
398
.
23.
Ibrahim
,
M. M.
,
Attia
,
A.
,
Emara
,
A. A.
, and
Moneib
,
H. A.
,
2020
, “
An Investigation of Soot Volume Fraction and Temperature for Natural Gas Laminar Diffusion Flame Established From a Honeycomb Gaseous Burner
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p. 012202.
24.
Atreya
,
A.
,
2006
, “
Highly Preheated Combustion Air System Wih/Without Oxygen Enrichment for Metal Processing Furnaces
,”
The University of Michigan
,
MI
,
Final Technical Report for DE-FC36-02ID14348
.
25.
Pourhoseini
,
S. H.
, and
Moghiman
,
M.
,
2014
, “
Experimental and Numerical Investigation Into Enhancing Radiation Characteristics of Natural Gas Flame by Injection of Micro Kerosene Droplets
,”
J. Enhanced Heat Transfer
,
21
(
6
), pp.
407
423
.
26.
Pourhoseini
,
S. H.
, and
Moghiman
,
M.
,
2015
, “
Effect of Pulverized Anthracite Coal Particles Injection on Thermal and Radiative Characteristics of Natural Gas Flame: An Experimental Study
,”
Fuel
,
140
, pp.
44
49
.
27.
Ibrahim
,
M. M.
,
Attia
,
A.
,
Moneib
,
H. A.
, and
Emara
,
A. A.
,
2021
, “
Effect of Soot-Inhibitor Additives on the Thermal Structure and Soot Volume Fraction Inside Laminar Diffusion Natural Gas Flames
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p. 062303.
28.
Shams
,
Z.
, and
Moghiman
,
M.
,
2017
, “
An Experimental Investigation of Ignition Probability of Diesel Fuel Droplets With Metal Oxide Nanoparticles
,”
Thermochim. Acta
,
657
(
10
), pp.
79
85
.
29.
Saleem
,
S.
,
Qasim
,
M.
,
Alderremy
,
A.
, and
Noreen
,
S.
,
2020
, “
Heat Transfer Enhancement Using Different Shapes of Cu Nanoparticles in the Flow of Water Based Nanofluid
,”
Phys. Scr.
,
95
(
5
), pp.
1
19
.
30.
Pourhoseini
,
S. H.
,
Ramezani-Aval
,
H.
, and
Naghizadeh
,
N.
,
2020
, “
FHD and MHD Effects of Fe3O4-Water Magnetic Nanofluid on the Enhancement of Overall Heat Transfer Coefficient of a Heat Exchanger
,”
Phys. Scr.
,
95
(
4
), pp.
1
9
.
31.
Bertrand
,
C.
, and
Delfau
,
J. L.
,
1985
, “
Mechanism of Soot Formation in Hydrocarbon Flames
,”
Combust. Sci. Technol.
,
44
(
1–2
), pp.
29
45
.
32.
Hashikawa
,
H.
,
Hirabayashi
,
D.
, and
Suzuki
,
K.
,
2007
, “
Enhancement of Soot Combustion With Alkaline Salts Through Melting Process
,”
Proceedings of International Symposium on EcoTopia Science
,
Nagoya, Aichi, Japan
,
Nov. 23–25
, pp.
944
946
.
33.
Calcote
,
H. F.
,
Olson
,
D. B.
, and
Keil
,
D. G.
,
1988
, “
Are Ions Important in Soot Formation?
,”
Energy Fuels
,
2
(
4
), pp.
494
504
.
34.
Bonczyk
,
P. A.
,
1988
, “
Suppression of Soot in Flames by Alkaline-Earth and Other Metal Additives
,”
Combust. Sci. Technol.
,
59
(
1–3
), pp.
143
163
.
35.
Wei
,
S.
,
Chen
,
J.
,
Xu
,
R.
,
Ding
,
T.
, and
Zhao
,
X.
,
2021
, “
Soot Formation With Light Extinction and Grayscale Extraction Methods Applied to Ethanol-Gasoline Blends Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p. 032302.
36.
Haynes
,
B. S.
,
Jander
,
H.
, and
Wagner
,
H. G.
,
1978
, “
The Effect of Metal Additives on the Formation of Soot in Premixed Flames
,”
Seventeenth Symposium (International) on Combustion
,
Leeds, UK
,
Aug. 20–25
,
The Combustion Institute
,
Pittsburgh, PA
, 17(1), pp.
1365
1374
.
37.
Bulewicz
,
E. M.
,
Evans
,
D. G.
, and
Padley
,
P. J.
,
1974
, “
Effect of Metallic Additives on Soot Formation Processes in Flames
,”
Fifteenth Symposium (International) on Combustion
,
Tokyo, Japan
,
Aug. 25–31
,
The Combustion Institute
,
Pittsburgh
, 15(1), pp.
1461
1470
.
38.
Lahaye
,
J.
,
Boehm
,
S.
, and
Ehrburger
,
P.
,
1994
, “
Metallic Additives in Soot Formation and Post-Oxidation
,”
Springer Ser. Chem. Phys.
,
59
, pp.
307
315
.
39.
Sapienza
,
R. S.
,
Butcher
,
T.
,
Krishna
,
C.
, and
Gaffney
,
J.
,
1981
, “
Soot Reduction in Diesel Engines by Catalytic Effects
,”
Symposium on Chemistry of Engine Combustion Deposits
,
ACS
,
Atlanta, GA
,
Mar. 29–Apr. 3
, pp.
1
10
.
You do not currently have access to this content.