Abstract

Spark ignition (SI) engines have a remarkable share in the passenger car segment in urban areas worldwide. Particulate matter (PM) emitted from these vehicles has an adverse health impact since it can penetrate deep into the lungs, leading to cardiovascular issues. In this study, a detailed physical, chemical, and morphological characterization of the PM emitted by a production-grade SI engine fueled with different alcohol–gasoline blends (gasohols), namely GM10 (10% methanol blended with gasoline, v/v), GE10 (10% ethanol blended with gasoline, v/v), and GB10 (10% butanol blended with gasoline, v/v) vis-à-vis baseline gasoline was performed. Results exhibited that gasohol-fueled engines emitted relatively lower particulate mass and numbers. Trace metal analysis was performed to explore the composition of PM, which showed that gasoline-fueled engines exhibited comparatively higher emissions of trace metals than gasohol-fueled engines. PM morphology was also investigated to evaluate the suitability of alcohol blending with gasoline, revealing that even a small fraction of alcohols blended with gasoline could alter the structure of particulates. This study successfully demonstrated that the large-scale implementation of gasohols in SI engines could reduce PM emissions and trace metals in the particulates. This study also showed the potential of gasohols to partially replace fossil fuels, which could be explored further for higher alcohol fractions.

References

1.
Shirmohammadi
,
F.
,
Sowlat
,
M. H.
,
Hasheminassab
,
S.
,
Saffari
,
A.
,
Ban-Weiss
,
G.
, and
Sioutas
,
C.
,
2017
, “
Emission Rates of Particle Number, Mass and Black Carbon by the Los Angeles International Airport (LAX) and Its Impact on Air Quality in Los Angeles
,”
Atmos. Environ.
,
151
, pp.
82
93
.
2.
Kumar
,
P.
,
Patton
,
A. P.
,
Durant
,
J. L.
, and
Frey
,
H. C.
,
2018
, “
A Review of Factors Impacting Exposure to PM2. 5, Ultrafine Particles and Black Carbon in Asian Transport Microenvironments
,”
Atmos. Environ.
,
187
, pp.
301
316
.
3.
Stacey
,
B.
,
2019
, “
Measurement of Ultrafine Particles at Airports: A Review
,”
Atmos. Environ.
,
198
, pp.
463
477
.
4.
Choi
,
Y.
,
Lee
,
J.
,
Jang
,
J.
, and
Park
,
S.
,
2019
, “
Effects of Fuel Injection Systems on Particle Emission Characteristics of Gasoline Vehicles
,”
Atmos. Environ.
,
217
, p.
116941
.
5.
Dwivedi
,
D.
,
Agarwal
,
A. K.
, and
Sharma
,
M.
,
2006
, “
Particulate Emission Characterisation of a Biodiesel vs Diesel-Fuelled Compression Ignition Transport Engine: A Comparative Study
,”
Atmos. Environ.
,
40
(
29
), pp.
5586
5595
.
6.
Zhang
,
Y.
,
Lou
,
D.
,
Tan
,
P.
, and
Hu
,
Z.
,
2018
, “
Experimental Study on the Particulate Matter and Nitrogenous Compounds From Diesel Engine Retrofitted With DOC+ CDPF+ SCR
,”
Atmos. Environ.
,
177
, pp.
45
53
.
7.
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2021
, “Engine Emission Control Devices for Particulate Matter and Oxides of Nitrogen: Challenges and Emerging Trends,”
Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction
,
A. P.
Singh
, and
A. K.
Agarwal
, eds.,
Springer
,
Singapore
, pp.
197
220
.
8.
Jedynska
,
A.
,
Tromp
,
P. C.
,
Houtzager
,
M. M.
, and
Kooter
,
I. M.
,
2015
, “
Chemical Characterisation of Biofuel Exhaust Emissions
,”
Atmos. Environ.
,
116
, pp.
172
182
.
9.
Roth
,
P.
,
Yang
,
J.
,
Peng
,
W.
,
Cocker
D. R.
,
Durbin
, III,
T. D.
,
Asa-Awuku
,
A.
, and
Karavalakis
,
G.
,
2020
, “
Intermediate and High Ethanol Blends Reduce Secondary Organic Aerosol Formation From Gasoline Direct Injection Vehicles
,”
Atmos. Environ.
,
220
, p.
117064
.
10.
Kalwar
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Utilisation of Primary Alcohols in Dual-Fuel Injection Mode in a Gasoline Direct Injection Engine
,”
Fuel
,
276
, p.
118068
.
11.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
.
12.
Bielaczyc
,
P.
,
Woodburn
,
J.
,
Klimkiewicz
,
D.
,
Pajdowski
,
P.
, and
Szczotka
,
A.
,
2013
, “
An Examination of the Effect of Ethanol-Gasoline Blends’ Physicochemical Properties on Emissions From a Light-Duty Spark-Ignition Engine
,”
Fuel Process. Technol.
,
107
, p.
50
63
.
13.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Particulate Morphology Characterization of Butanol–Gasoline Blend Fueled Spark-Ignition Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102303
.
14.
Alasfour
,
F. N.
,
1997
, “
Butanol—A Single-Cylinder Engine Study: Engine Performance
,”
Int. J. Energy Res.
,
21
(
1
), pp.
21
30
.
15.
Awad
,
O. I.
,
Mamat
,
R.
,
Ibrahim
,
T. K.
,
Hammid
,
A. T.
,
Yusri
,
I. M.
,
Hamidi
,
M. A.
,
Humada
,
A. M.
, and
Yusop
,
A. F.
,
2018
, “
Overview of the Oxygenated Fuels in Spark Ignition Engine: Environmental and Performance
,”
Renew. Sust. Energy Rev.
,
91
, p.
3
.
16.
Yusri
,
I. M.
,
Mamat
,
R.
,
Najafi
,
G.
,
Razman
,
A.
,
Awad
,
O. I.
,
Azmi
,
W. H.
,
Ishak
,
W. F. W.
, and
Shaiful
,
A. I. M.
,
2017
, “
Alcohol-Based Automotive Fuels From First Four Alcohol Family in Compression and Spark Ignition Engine: A Review on Engine Performance and Exhaust Emissions
,”
Renew. Sust. Energy Rev.
,
77
, pp.
169
181
.
17.
Pratap Singh
,
A.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
18.
Ghadikolaei
,
M. A.
,
Wong
,
P. K.
,
Cheung
,
C. S.
,
Ning
,
Z.
,
Yung
,
K.-F.
,
Zhao
,
J.
,
Gali
,
N. K.
, and
Berenjestanaki
,
A. V.
,
2021
, “
Impact of Lower and Higher Alcohols on the Physicochemical Properties of Particulate Matter From Diesel Engines: A Review
,”
Renew. Sust. Energy Rev.
,
143
, p.
110970
.
19.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
20.
Zhou
,
H.
,
Zhao
,
H.
,
Hu
,
J.
,
Li
,
M.
,
Feng
,
Q.
,
Qi
,
J.
,
Shi
,
Z.
,
Mao
,
H.
, and
Jin
,
T.
,
2019
, “
Primary Particulate Matter Emissions and Estimates of Secondary Organic Aerosol Formation Potential From the Exhaust of a China V Diesel Engine
,”
Atmos. Environ.
,
218
, p.
116987
.
21.
González
,
L. T.
,
Rodríguez
,
F. E. L.
,
Sánchez-Domínguez
,
M.
,
Leyva-Porras
,
C.
,
Silva-Vidaurri
,
L. G.
,
Acuna-Askar
,
K.
,
Kharisov
,
B. I.
,
Chiu
,
J. F.
, and
Barbosa
,
J. A.
,
2016
, “
Chemical and Morphological Characterization of TSP and PM2. 5 by SEM-EDS, XPS and XRD Collected in the Metropolitan Area of Monterrey, Mexico
,”
Atmos. Environ.
,
143
, pp.
249
260
.
22.
Habre
,
R.
,
Moshier
,
E.
,
Castro
,
W.
,
Nath
,
A.
,
Grunin
,
A.
,
Rohr
,
A.
,
Godbold
,
J.
, et al
,
2014
, “
The Effects of PM 2.5 and Its Components From Indoor and Outdoor Sources on Cough and Wheeze Symptoms in Asthmatic Children
,”
J. Exp. Sci. Environ. Epidemiol.
,
24
(
4
), pp.
380
387
.
23.
Mulware
,
S. J.
,
2013
, “
Trace Elements and Carcinogenicity: A Subject in Review
,”
Biotech
,
3
(
2
), pp.
85
96
.
24.
Wahid
,
S. M. S.
,
2018
, “
Automotive Brake Wear: A Review
,”
Environ. Sci. Pollut. Res.
,
25
(
1
), pp.
174
180
.
25.
Shukla
,
P. C.
,
Gupta
,
T.
,
Labhsetwar
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
Trace Metals and Ions in Particulates Emitted by Biodiesel Fuelled Engine
,”
Fuel
,
188
, pp.
603
609
.
26.
Rocha
,
L. D. S.
, and
Corrêa
,
S. M.
,
2018
, “
Determination of Size-Segregated Elements in Diesel-Biodiesel Blend Exhaust Emissions
,”
Environ. Sci. Pollut. Res.
,
25
(
18
), pp.
18121
18129
.
27.
Aucelio
,
R. Q.
, and
Curtius
,
A. J.
,
2002
, “
Evaluation of Electrothermal Atomic Absorption Spectrometry for Trace Determination of Sb, As and Se in Gasoline and Kerosene Using Microemulsion Sample Introduction and Two Approaches for Chemical Modification
,”
J. Anal. At. Spectrom.
,
17
(
3
), pp.
242
247
.
28.
Hua
,
Y.
,
Liu
,
F.
,
Qiu
,
L.
,
Qian
,
Y.
, and
Meng
,
S.
,
2019
, “
Numerical Study of Particle Dynamics in Laminar Diffusion Flames of Gasoline Blended With Different Alcohols
,”
Fuel
,
257
, p.
116065
.
29.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Particulate Morphology and Toxicity of an Alcohol-Fuelled HCCI Engine
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
323
336
.
30.
Hua
,
Y.
,
Liu
,
F.
,
Wu
,
H.
,
Lee
,
C. F.
, and
Li
,
Y.
,
2021
, “
Effects of Alcohol Addition to Traditional Fuels on Soot Formation: A Review
,”
Int. J. Engine Res.
,
22
(
5
), pp.
1395
1420
.
31.
Agarwal
,
A. K.
,
Karare
,
H.
, and
Dhar
,
A.
,
2014
, “
Combustion, Performance, Emissions and Particulate Characterisation of a Methanol–Gasoline Blend (Gasohol) Fuelled Medium Duty Spark Ignition Transportation Engine
,”
Fuel Process. Technol.
,
121
, pp.
16
24
.
32.
Geng
,
P.
,
Zhang
,
H.
, and
Yang
,
S.
,
2015
, “
Experimental Investigation on the Combustion and Particulate Matter (PM) Emissions From a Port-Fuel Injection (PFI) Gasoline Engine Fueled With Methanol–Ultralow Sulfur Gasoline Blends
,”
Fuel
,
145
, pp.
221
227
.
33.
Costagliola
,
M. A.
,
De Simio
,
L.
,
Iannaccone
,
S.
, and
Prati
,
M. V.
,
2013
, “
Combustion Efficiency and Engine-Out Emissions of a SI Engine Fueled With Alcohol/Gasoline Blends
,”
Appl. Energy
,
111
, pp.
1162
1171
.
34.
Leach
,
F. C.
,
Stone
,
R.
,
Richardson
,
D.
,
Turner
,
J. W.
,
Lewis
,
A.
,
Akehurst
,
S.
,
Remmert
,
S.
,
Campbell
,
S.
, and
Cracknell
,
R.
,
2018
, “
The Effect of Oxygenate Fuels on PN Emissions From a Highly Boosted GDI Engine
,”
Fuel
,
225
, pp.
277
286
.
35.
Han
,
D.
,
Fan
,
Y.
,
Sun
,
Z.
,
Nour
,
M.
, and
Li
,
X.
,
2020
, “
Combustion and Emissions of Isomeric Butanol/Gasoline Surrogates Blends on an Optical GDI Engine
,”
Fuel
,
272
, p.
117690
.
36.
Zhang
,
Z.
,
Wang
,
T.
,
Jia
,
M.
,
Wei
,
Q.
,
Meng
,
X.
, and
Shu
,
G.
,
2014
, “
Combustion and Particle Number Emissions of a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline and n-Butanol/Gasoline Blends With Exhaust gas Gecirculation
,”
Fuel
,
130
, pp.
177
188
.
37.
Zhao
,
L.
,
Wang
,
D.
, and
Qi
,
W.
,
2020
, “
Particulate Matter (PM) Emissions and Performance of Bio-Butanol-Methanol-Gasoline Blends Coupled With Air Dilution in SI Engines
,”
J. Aerosol Sci.
,
145
, p.
105546
.
38.
Shukla
,
A. K.
,
Lalchandani
,
V.
,
Bhattu
,
D.
,
Dave
,
J. S.
,
Rai
,
P.
,
Thamban
,
N. M.
,
Mishra
,
S.
, et al
,
2021
, “
Real-time Quantification and Source Apportionment of Fine Particulate Matter, Including Organics and Elements in Delhi During Summertime
,”
Atmos. Environ.
,
261
, p.
118598
.
39.
Korn
,
M. D. G. A.
,
dos Santos
,
D. S. S.
,
Welz
,
B.
,
Vale
,
M. G. R.
,
Teixeira
,
A. P.
,
de Castro Lima
,
D.
, and
Ferreira
,
S. L. C.
,
2007
, “
Atomic Spectrometric Methods for the Determination of Metals and Metalloids in Automotive Fuels—A Review
,”
Talanta
,
73
(
1
), pp.
1
11
.
40.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
41.
Ferreira da Silva
,
M.
,
Vicente de Assunção
,
J.
,
de Fátima Andrade
,
M.
, and
Pesquero
,
C. R.
,
2010
, “
Characterisation of Metal and Trace Element Contents of Particulate Matter (PM10) Emitted by Vehicles Running on Brazilian Fuels—Hydrated Ethanol and Gasoline With 22% of Anhydrous Ethanol
,”
J. Toxicol. Environ. Health, Part A
,
73
(
13–14
), pp.
901
909
.
42.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Fuel Injection Parameters on Combustion Stability and Emissions of a Mineral Diesel-Fueled Partially Premixed Charge Compression Ignition (PCCI) Engine
,”
Appl. Energy
,
190
, pp.
658
669
.
43.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
.
44.
Singh
,
A. P.
,
Pal
,
A.
,
Gupta
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
Particulate Emissions From Laser Ignited and Spark Ignited Hydrogen Fueled Engines
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15956
15965
.
45.
Gangwar
,
J.
,
Gupta
,
T.
,
Gupta
,
S.
, and
Agarwal
,
A. K.
,
2011
, “
Emissions From Diesel Versus Biodiesel Fuel Used in a CRDI SUV Engine: PM Mass and Chemical Composition
,”
Inhalation Toxicol.
,
23
(
8
), pp.
449
458
.
46.
Gangwar
,
J. N.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2012
, “
Composition and Comparative Toxicity of Particulate Matter Emitted From a Diesel and Biodiesel Fuelled CRDI Engine
,”
Atmos. Environ.
,
46
, pp.
472
481
.
47.
Hu
,
Z.
,
Lu
,
Z.
,
Zhang
,
H.
,
Song
,
B.
, and
Quan
,
Y.
,
2021
, “
Effect of Oxidation Temperature on Oxidation Reactivity and Nano-structure of Particulate Matter From a China VI GDI Vehicle
,”
Atmos. Environ.
,
256
, p.
118461
.
48.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Rajput
,
P.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2018
, “
Mutagenicity and Cytotoxicity of Particulate Matter Emitted From Biodiesel-Fueled Engines
,”
Environ. Sci. Technol.
,
52
(
24
), pp.
14496
14507
.
49.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2020
, “
Toxicity of Exhaust Particulates and Gaseous Emissions From Gasohol (Ethanol-Blended Gasoline)-Fuelled Spark-Ignition Engines
,”
Environ. Sci.: Process. Impacts
,
22
(
7
), pp.
1540
1553
.
50.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Split Injection Strategies for Biodiesel-Fueled Premixed Charge Compression Ignition Combustion Engine—Part II: Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122304
.
51.
Na
,
K.
,
Biswas
,
S.
,
Robertson
,
W.
,
Sahay
,
K.
,
Okamoto
,
R.
,
Mitchell
,
A.
, and
Lemieux
,
S.
,
2015
, “
Impact of Biodiesel and Renewable Diesel on Emissions of Regulated Pollutants and Greenhouse Gases on a 2000 Heavy-Duty Diesel Truck
,”
Atmos. Environ.
,
107
, pp.
307
314
.
52.
Lemaire
,
R.
,
Therssen
,
E.
, and
Desgroux
,
P.
,
2010
, “
Effect of Ethanol Addition in Gasoline and Gasoline–Surrogate on Soot Formation in Turbulent Spray Flames
,”
Fuel
,
89
(
12
), pp.
3952
3959
.
53.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilisation of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
.
54.
Singh
,
A. P.
,
Pal
,
P.
, and
Agarwal
,
A. K.
,
2016
, “
Comparative Particulate Characteristics of Hydrogen, CNG, HCNG, Gasoline and Diesel-Fueled Engines
,”
Fuel
,
185
(
1
), pp.
491
499
.
55.
Agarwal
,
A. K.
,
Ateeq
,
B.
,
Gupta
,
T.
,
Singh
,
A. P.
,
Pandey
,
S. K.
,
Sharma
,
N.
,
Agarwal
,
R. A.
, et al
,
2018
, “
Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This Be a Clean Solution for Megacities With Mixed-Traffic Conditions?
,”
Environ. Pollut.
,
239
, pp.
499
511
.
56.
El-Shobokshy
,
M. S.
,
1984
, “
A Preliminary Analysis of the Inhalable Particulate Lead in the Ambient Atmosphere of the City of Riyadh, Saudi Arabia
,”
Atmos. Environ.
,
18
(
10
), pp.
2125
2130
.
57.
Sharma
,
M.
,
Agarwal
,
A. K.
, and
Bharathi
,
K. V. L.
,
2005
, “
Characterisation of Exhaust Particulates From Diesel Engine
,”
Atmos. Environ.
,
39
(
17
), pp.
3023
3028
.
58.
Shukla
,
P. C.
,
Gupta
,
T.
,
Gupta
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
A Qualitative Correlation Between Engine Exhaust Particulate Number and Mass Emissions
,”
Fuel
,
202
, pp.
241
245
.
59.
Patel
,
C.
,
Chandra
,
K.
,
Hwang
,
J.
,
Agarwal
,
R. A.
,
Gupta
,
N.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2019
, “
Comparative Compression Ignition Engine Performance, Combustion, and Emission Characteristics, and Trace Metals in Particulates From Waste Cooking Oil, Jatropha and Karanja Oil Derived Biodiesels
,”
Fuel
,
236
, pp.
1366
1376
.
60.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Kumar
,
V.
,
2021
, “
Particulate Characteristics of Low-Temperature Combustion (PCCI and RCCI) Strategies in Single Cylinder Research Engine for Developing Sustainable and Cleaner Transportation Solution
,”
Environ. Pollut.
,
284
, p.
117375
.
61.
Agarwal
,
A. K.
,
Gupta
,
T.
,
Lukose
,
J.
, and
Singh
,
A. P.
,
2015
, “
Particulate Characterisation and Size Distribution in the Exhaust of a Gasoline Homogeneous Charge Compression Ignition Engine
,”
Aerosol Air Quality Res.
,
15
(
2
), pp.
504
516
.
62.
Pattammattel
,
A.
,
Leppert
,
V. J.
,
Aronstein
,
P.
,
Robinson
,
M.
,
Mousavi
,
A.
,
Sioutas
,
C.
,
Forman
,
H. J.
, and
O’Day
,
P. A.
,
2021
, “
Iron Speciation in Particulate Matter (PM2. 5) From Urban Los Angeles Using Spectro-microscopy Methods
,”
Atmos. Environ.
,
245
, p.
117988
.
You do not currently have access to this content.