Abstract

Of late, the design and development of large and small wind farms are gaining importance to meet the growing energy demand. In this aspect, several wind turbine wake models have been proposed over the years, some of which are the legacy of Jensen, Larsen, Lissaman, Frandsen, and Ainslie wake models. Despite their robustness, the analytical formulations of these models are widely explored as research tools for estimating the performance of wind farms. However, because of several limitations and assumptions like top-hat shape, Gaussian profile, axisymmetric, negligible atmospheric boundary layer effect, and others, these models often overestimate the flow characteristics. In view of this, there is always a scope for developing better correlations to predict the performance of wind farms more accurately. This article gives a conspectus of various wind turbine wake models that have evolved over the years and then recommends some conceptual wind farm designs of assorted configurations.

References

1.
Kowalskia
,
M. F.
,
Rovenskayab
,
E.
,
Krausmanna
,
F.
,
Palluac
,
I.
, and
Mc-Neill
,
J. R.
,
2019
, “
Energy Transitions and Social Revolutions
,”
Technol. Forecast. Soc. Change
,
138
, pp.
69
77
.
2.
IEA
,
2019
,
World Energy Outlook 2019 Report
.
3.
Abas
,
N.
,
Kalair
,
A.
, and
Khan
,
N.
,
2015
, “
Review of Fossil Fuels and Future Energy Technologies
,”
Futures
,
69
, pp.
31
49
.
4.
Lucas
,
A.
,
2005
,
Wind, Water, Work
,
Brill Publication
,
Leiden
.
5.
Tasneem
,
Z.
,
Noman
,
A. A.
,
Das
,
S. K.
,
Saha
,
D. K.
,
Islam
,
M. R.
,
Ali
,
M. F.
,
Badal
,
M. F. R.
,
Ahamed
,
M. H.
,
Moyeen
,
S. I.
, and
Alam
,
F.
,
2020
, “
An Analytical Review on the Evaluation of Wind Resource and Wind Turbine for Urban Application: Prospect and Challenges
,”
Dev. Built Environ.
,
4
, pp.
100033
.
6.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
7.
Bilgili
,
M.
,
Tontu
,
M.
, and
Sahin
,
B.
,
2021
, “
Aerodynamic Rotor Performance of a 3300-kW Modern Commercial Large-Scale Wind Turbine Installed in a Wind Farm
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), pp.
031302
.
8.
Siram
,
O.
,
Kesharwani
,
N.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Aerodynamic Design and Wind Tunnel Tests of Small-Scale Horizontal-Axis Wind Turbines for Low Tip Speed Ratio Applications
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041009
.
9.
Steven
,
R. J. A. M.
, and
Meneveau
,
C.
,
2017
, “
Flow Structure and Turbulence in Wind Farms
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
311
339
.
10.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
Wiley Publication
,
UK
.
11.
Adaramola
,
M. S.
, and
Krogstad
,
P.-Å.
,
2011
, “
Experimental Investigation of Wake Effects on Wind Turbine Performance
,”
Renew. Energy
,
36
(
8
), pp.
2078
2086
.
12.
McKay
,
P.
,
Carriveau
,
R.
, and
Ting
,
D. S.-K.
,
2013
, “
Wake Impacts on Downstream Wind Turbine Performance and Yaw Alignment
,”
Wind Energy
,
16
(
2
), pp.
221
234
.
13.
Barthelmie
,
R. J.
,
Frandsen
,
S. T.
,
Nielsen
,
M. N.
,
Pryor
,
S. C.
,
Rethore
,
P.-E.
, and
Jorgensen
,
H. E.
,
2007
, “
Modelling and Measurements of Power Losses and Turbulence Intensity in Wind Turbine Wakes at Middelgrunden Offshore Wind Farm
,”
Wind Energy
,
10
(
6
), pp.
517
528
.
14.
Barthelmie
,
R. J.
,
Folkerts
,
L.
,
Ormel
,
F. T.
,
Sanderhoff
,
P.
,
Eecen
,
P. J.
,
Stobbe
,
O.
, and
Nielsen
,
N. M.
,
2002
, “
Offshore Wind Turbine Wakes Measured by Sodar
,”
J. Atmos. Ocean. Technol.
,
20
(
4
), pp.
446
477
.
15.
Wang
,
H.
,
Zhang
,
B.
, and
Qiu
,
Q.
,
2015
, “
Numerical Study of the Effects of Wind Shear Coefficients on the Flow Characteristics of the Near Wake of a Wind Turbine Blade
,”
J. Power Energy
,
230
(
1
), pp.
86
98
.
16.
Kumar
,
R.
,
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2021
, “Characterizing the Transitional Behavior of Wind Turbine Wake from Near to Far Wake Regimes,” ASME 2021 Power Conference, Virtual, Online, July 20–22, p. V001T09A015, Paper No. POWER 2021-65959.
17.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
18.
Chen
,
L.
, and
MacDonald
,
E.
,
2012
, “
Considering Landowner Participation in Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084506
.
19.
Vermeulen
,
P. E. J.
,
1980
, “
An Experimental Analysis of Wind Turbine Wakes
,”
Proceeding of 3rd International Symposium on Wind Energy Systems
,
Lyngby
,
Aug. 26–29
, pp.
431
450
.
20.
Lissaman
,
P. B. S.
,
1979
, “
Energy Effectiveness of Arbitrary Arrays of Wind Turbines
,”
J. Energy
,
3
(
6
), pp.
079
0114
.
21.
Schepers
,
J. G.
,
2003
, “ENDOW: Validation and Improvement of ECN’s Wake Model,” Technical Report ECN-C–03-034, Energy Research Centre of the Netherlands.
22.
Al Sam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
An Investigation of Wind Farm Power Production for Various Atmospheric Boundary Layer Height
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051216
.
23.
Jensen
,
N. O.
,
1983
, “A Note on Wind Generator Interaction,” Risø National Laboratory Report Risø-M-2411, Roskilde, November.
24.
Katic
,
I.
,
Højstrup
,
J.
, and
Jensen
,
N. O.
,
1987
, “
A Simple Model for Cluster Efficiency
,”
European Wind Energy Association (EWEA) Conference and Exhibition
,
Rome
,
Oct. 7–9
, pp.
407
410
.
25.
Shakoor
,
R.
,
Hassan
,
M. Y.
,
Raheem
,
A.
, and
Wu
,
Y.-K.
,
2016
, “
Wake Effect Modelling: A Review of Wind Farm Layout Optimization Using Jensen’s Model
,”
Renew. Sustain. Energy Rev.
,
58
, pp.
1048
1059
.
26.
Vanluvanee
,
D. R.
,
2006
, “
Investigation of Observed and Modelled Wake Effects at Horns Rev Using WindPRO
,”
MS thesis
,
Department of Mechanical Engineering, Technical University of Denmark
,
Kongens Lyngby
.
27.
Han
,
T.
,
2011
, “
The Assessment of Dynamic Wake Effects on Loading
,”
MS thesis
,
Technical University of Denmark
,
Kongens Lyngby
.
28.
Larsen
,
G. C.
,
1988
, “A Simple Wake Calculation Procedure,” Report Risø-M-2760; Risø National Laboratory, Roskilde, pp.
1
53
.
29.
Schlichting
,
H.
,
2014
,
Boundary-Layer Theory
, 7th ed.,
Mc-Graw Hill Education
,
New Delhi, India
.
30.
Crespo
,
A.
, and
Hernandez
,
J.
,
1993
, “
Analytical Correlations for Turbulence Characteristics in the Wakes of Wind Turbines
,”
Proceedings of 1993 European Community Wind Energy Conference Travemunde
,
Travemunde, Germany
,
Mar. 8–12
, pp.
436
439
.
31.
Crespo
,
A.
, and
Hernandez
,
J.
,
1996
, “
Turbulence Characteristics in Wind-Turbine Wakes
,”
J. Wind Eng. Ind. Aerodyn.
,
61
(
1
), pp.
71
85
.
32.
Larsen
,
G. C.
, and
Réthoré
,
P.-E.
,
2009
, “A Simple Stationary Semi-Analytical Wake Model,” Report Risø-R-1713(EN), Risø National Laboratory, Roskilde.
33.
Frandsen
,
S. T.
,
Barthelmie
,
R. J.
,
Pryor
,
S.
,
Rathmann
,
O.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Thøgersen
,
M.
,
2006
, “
Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms
,”
Wind Energy
,
9
(
1–5
), pp.
39
53
.
34.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2014
, “
A New Analytical Model for Wind-Turbine Wakes
,”
Renew. Energy
,
70
, pp.
116
123
.
35.
Ainslie
,
J. F.
,
1988
, “
Calculating the Flow Field in the Wake of Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
27
(
1–3
), pp.
213
224
.
36.
Ainslie
,
J. F.
,
Hassan
,
U.
,
Parkinson
,
H. G.
, and
Taylor
,
G. J.
,
1990
, “
A Wind Tunnel Investigation of the Wake Structure Within Small Wind Turbine Farms
,”
Wind Eng.
,
14
(
1
), pp.
24
31
. http://www.jstor.org/stable/43749410
37.
Crespo
,
A.
,
Hernandez
,
J.
,
Fraga
,
E.
, and
Andreu
,
C.
,
1988
, “
Experimental Validation of the UPM Computer Code to Calculate Wind Turbine Wakes and Comparison With Other Models
,”
J. Wind Eng. Ind. Aerodyn.
,
27
, pp.
77
88
.
38.
González-Longatt
,
F.
,
Wall
,
P.
, and
Terzija
,
V.
,
2012
, “
Wake Effect in Wind Farm Performance: A Steady-State and Dynamic Behavior
,”
Renew. Energy
,
39
(
1
), pp.
329
338
.
39.
Kuo
,
J. Y. J.
,
Romero
,
D. A.
, and
Amon
,
C. H.
,
2015
, “
A Mechanistic Semi-Empirical Wake Interaction Model for Wind Farm Layout Optimization
,”
Energy
,
93
(
Part 2
), pp.
2157
2165
.
40.
Tong
,
W.
,
Chowdhury
,
S.
,
Zhang
,
J.
, and
Messac
,
A.
,
2012
, “
Impact of Different Wake Models on the Estimation of Wind Farm Power Generation
,”
AIAA/ISSMO 2012 Multidisciplinary Analysis and Optimization Conference
,
Indianapolis, IN
,
Sept. 17–19
.
41.
Barthelmie
,
R. J.
,
Pryor
,
S.
,
Frandsen
,
S. T.
,
Hansen
,
K. S.
,
Schepers
,
J.
,
Rados
,
K.
,
Schlez
,
W.
,
Neubert
,
A.
,
Jensen
,
L. E.
, and
Neckelmann
,
S.
,
2010
, “
Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms
,”
J. Atmos. Ocean Technol.
,
27
(
8
), pp.
1302
1317
.
42.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
1351
1371
.
43.
Jain
,
S.
, and
Saha
,
U. K.
,
2019
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
.
44.
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Wind Tunnel Tests of a Model Small-Scale Horizontal-Axis Wind Turbine Developed From Blade Element Momentum Theory
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
064502
.
45.
Abkar
,
M.
,
2019
, “
Theoretical Modelling of Vertical-Axis Wind Turbine Wake
,”
Energies
,
12
(
1
), p.
10
.
46.
Barnes
,
A.
,
Marshall-Cross
,
D.
, and
Hughes
,
B. R.
,
2021
, “
Validation and Comparison of Turbulence Models for Predicting Wakes of Vertical Axis Wind Turbines
,”
J. Ocean Eng. Mar. Energy
,
7
(
4
), pp.
339
362
.
47.
Yang
,
P.
, and
Najafi
,
H.
,
2022
, “
The Effect of Using Different Wake Models on Wind Farm Layout Optimization: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070904
.
48.
Rolin
,
V.-C.
, and
Porte-Agel Fernando
,
P.-A.
,
2018
, “
Experimental Investigation of Vertical-Axis Wind-Turbine Wakes in Boundary Layer Flow
,”
Renew. Energy
,
118
, pp.
1
13
. 4
49.
Grant
,
I.
, and
Parkin
,
P.
,
2000
, “
A DPIV Study of the Trailing Vortex Elements From the Blades of a Horizontal Axis Wind Turbine in Yaw
,”
Exp. Fluids
,
28
(
7
), pp.
368
376
.
50.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
51.
Medici
,
D.
, and
Alfredsson
,
P. H.
,
2006
, “
Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding
,”
Wind Energy
,
9
(
3
), pp.
219
236
.
52.
Medici
,
D.
, and
Alfredsson
,
P. H.
,
2008
, “
Measurements Behind Model Wind Turbines: Further Evidence of Wake Meandering
,”
Wind Energy
,
11
(
2
), pp.
211
217
.
53.
Dou
,
B.
,
Guala
,
M.
,
Zeng
,
P.
, and
Lei
,
L.
,
2019
, “
Experimental Investigation of the Power Performance of a Minimal Wind Turbine Array in an Atmospheric Boundary Layer Wind Tunnel
,”
Energy Convers. Manage.
,
196
, pp.
906
919
.
54.
Taylor
,
J.
,
Eastwick
,
C.
,
Lawrence
,
C.
, and
Wilson
,
R.
,
2013
, “
Noise Levels and Noise Perception From Small and Micro Wind Turbines
,”
Renew. Energy
,
55
, pp.
120
127
.
55.
Hancock
,
P. E.
,
Zhang
,
S.
,
Pascheke
,
F.
, and
Hayden
,
P.
,
2014
, “
Wind Tunnel Simulation of a Wind Turbine Wake in Neutral, Stable and Unstable Wind Flow
,”
J. Phys.: Conf. Ser.
,
555
(
1
), p.
012047
.
56.
Becerra
,
M.
,
Morán
,
J.
,
Jerez
,
A.
,
Cepeda
,
F.
, and
Valenzuela
,
M.
,
2017
, “
Wind Energy Potential in Chile: Assessment of a Small Scale Wind Farm for Residential Clients
,”
Energy Convers. Manage.
,
140
, pp.
71
90
.
57.
Wei
,
Y.
,
Wei
,
T.
,
Ahmet
,
O.
, and
Hui
,
H.
,
2014
, “
An Experimental Study on the Effects of Relative Rotation Direction on the Wake Interferences Among Tandem Wind Turbines
,”
Sci. China Phys. Mech. Astron.
,
57
(
5
), pp.
935
949
.
58.
Annoni
,
J.
,
Howard
,
K.
,
Seiler
,
P.
, and
Guala
,
M.
,
2016
, “
An Experimental Investigation on the Effect of Individual Turbine Control on Wind Farm Dynamics
,”
Wind Energy
,
19
(
8
), pp.
1453
1467
.
59.
Tian
,
W.
,
Ozbay
,
A.
, and
Hui
,
H.
,
2017
, “
An Experimental Investigation on the Wake Interferences Among Wind Turbines Sited in Aligned and Staggered Wind Farms
,”
Wind Energy
,
21
(
2
), pp.
100
114
.
60.
Crespo
,
A.
,
Hernandez
,
J.
, and
Frandsen
,
S.
,
1999
, “
Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
(
1
), pp.
1
24
.
61.
Massouh
,
F.
, and
Dobrev
,
I.
,
2007
, “
Exploration of the Vortex Wake Behind of Wind Turbine Rotor
,”
J. Phys.: Conf. Ser.
,
75
, p.
012036
.
62.
Kocer
,
G.
,
Mansour
,
M.
,
Chokani
,
N.
,
Abhari
,
R. S.
, and
Müller
,
M.
,
2011
, “
Full-Scale Wind Turbine Near-Wake Measurements Using an Instrumented Uninhabited Aerial Vehicle
,”
ASME J. Solar Energy Eng.
,
133
(
4
), p.
041011
.
63.
Eriksen
,
P.-E.
, and
Krogstad
,
P. A.
,
2017
, “
An Experimental Study of the Wake of a Model Wind Turbine Using Phase-Averaging
,”
Int. J. Heat Fluid Flow
,
67
(
Part B
), pp.
52
62
.
64.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Effects From Complex Terrain on Wind-Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051205
.
65.
Sedaghatizadeh
,
N.
,
Arjomandi
,
M.
,
Kelso
,
R.
,
Cazzolato
,
B.
, and
Ghayesh
,
M. H.
,
2019
, “
The Effect of the Boundary Layer on the Wake of a Horizontal Axis Wind Turbine
,”
Energy
,
182
, pp.
1202
1221
.
66.
Siram
,
O.
,
Ravi
,
K.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2022
, “
Wind Tunnel Probe Into an Array of Small-Scale Horizontal-Axis Wind Turbines Operating at Low Tip Speed Ratio Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
091303
.
67.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
, and
Mori
,
N.
,
2017
, “
Investigation of Wake Effects on a Horizontal Axis Wind Turbine in Field Experiments (Part I: Horizontal Axis Direction)
,”
Energy
,
134
(
C
), pp.
482
492
.
68.
Talavera
,
M.
, and
Shu
,
F.
,
2017
, “
Experimental Study of Turbulence Intensity Influence on Wind Turbine Performance and Wake Recovery in a Low-Speed Wind Tunnel
,”
Renew. Energy
,
109
, pp.
363
371
.
69.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
70.
Magnusson
,
M.
,
1999
, “
Near Wake Behaviour of Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
147
167
.
71.
Zhang
,
J.
,
Chowdhury
,
S.
,
Messac
,
A.
, and
Castillo
,
L.
,
2013
, “
A Multivariate and Multimodal Wind Distribution Model
,”
Renew. Energy
,
51
, pp.
436
447
.
72.
Krogstad
,
P.-Å.
, and
Eriksen
,
P. E.
,
2013
, “
‘Blind Test’ Calculations of the Performance and Wake Development for a Model Wind Turbine
,”
Renew. Energy
,
50
, pp.
325
333
.
73.
Mo
,
J.-O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
,
Kelso
,
R.
, and
Lee
,
Y.-H.
,
2013
, “
Effects of Wind Speed Changes on Wake Instability of a Wind Turbine in a Virtual Wind Tunnel Using Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
117
, pp.
38
56
.
74.
Carrión
,
M.
,
Woodgate
,
M.
,
Steijl
,
R.
,
Barakos
,
G. N.
,
Gomez-Iradi
,
S.
, and
Munduate
,
X.
,
2015
, “
Understanding Wind-Turbine Wake Breakdown Using Computational Fluid Dynamics
,”
AIAA J.
,
53
(
3
), pp.
588
602
.
75.
Aubrun
,
S.
,
Loyer
,
S.
,
Hancock
,
P. E.
, and
Hayden
,
P.
,
2013
, “
Wind Turbine Wake Properties: Comparison Between a Non-Rotating Simplified Wind Turbine Model and a Rotating Model
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
1
8
.
76.
Siram
,
O.
, and
Sahoo
,
N.
,
2019
, “
Near Wake Regime Study on Wind Turbine Blade Tip Vortex
,”
ASME 2019 Gas Turbine India Conference
,
Dec. 5–6
,
IIT Madras, India
, Paper No: GTINDIA2019-2493.
77.
Siram
,
O.
, and
Sahoo
,
N.
,
2021
, “
Characterizing the Helical Vortex Frequency of HAWT
,”
Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy
,
Singapore
,
Dec. 10–12
, pp.
611
620
.
78.
Uemura
,
Y.
,
Tanabe
,
Y.
,
Mamori
,
H.
,
Fukushima
,
N.
, and
Yamamoto
,
M.
,
2017
, “
Wake Deflection in Long Distance From a Yawed Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051212
.
79.
Castellani
,
F.
,
Sdringola
,
P.
, and
Astolfi
,
D.
,
2018
, “
Analysis of Wind Turbine Wakes Through Time-Resolved and SCADA Data of an Onshore Wind Farm
,”
ASME J. Solar Energy Eng.
,
140
(
4
), p.
044501
.
80.
Troldborg
,
N.
,
Sorensen
,
J. N.
, and
Mikkelsen
,
R.
,
2010
, “
Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Flow
,”
Wind Energy
,
13
(
1
), pp.
86
99
.
81.
Troldborg
,
N.
,
Zhale
,
F.
,
Réthoré
,
P.-E.
, and
Sorensen
,
N.
,
2012
, “Comparison of the Wake of Different Types of Wind Turbine CFD Models,” 50th AIAA Aerospace Science Meeting, Jan. 9–12, AIAA Paper 2012-0237.
82.
Gaumond
,
M.
,
Réthoré
,
P.-E.
,
Ott
,
S.
,
Peña
,
A.
,
Bechmann
,
A.
, and
Hansen
,
K. S.
,
2014
, “
Evaluation of the Wind Direction Uncertainty and Its Impact on Wake Modelling at the Horns Rev Offshore Wind Farm
,”
Wind Energy
,
17
(
8
), pp.
1169
1178
.
83.
Bergeles
,
G.
,
Michos
,
A.
, and
Athanassiadis
,
N.
,
1991
, “
Velocity Vector and Turbulence in the Symmetry Plane of a Darrieus Wind Generator
,”
J. Wind Eng. Ind. Aerodyn.
,
37
(
1
), pp.
87
101
.
84.
Mittal
,
A.
, and
Taylor
,
L. K.
,
2010
, “
Optimization of Large Wind Farms Using a Genetic Algorithm
,”
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
, pp.
3159
3172
.
85.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2012
, “
Unrestricted Wind Farm Layout Optimization (UWFLO): Investigating Key Factors Influencing the Maximum Power Generation
,”
Renew. Energy
,
38
(
1
), pp.
16
30
.
86.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2013
, “
Optimizing the Arrangement and the Selection of Turbines for Wind Farms Subject to Varying Wind Conditions
,”
Renew. Energy
,
52
, pp.
273
282
.
87.
Du
,
P. B. L.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.
88.
Hasan
,
A. S.
,
Elgammal
,
T.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
89.
Naik
,
K.
, and
Sahoo
,
N.
,
2021
, “
Dimple Shape Effect on the Aerodynamic Performance of H-Rotor Darrieus Vertical Axis Wind Turbine
,”
Proceedings of the ASME 2021 Gas Turbine India Conference, Virtual Conference
,
Dec. 2–3
, p.
V001T09A006
, Paper No. GTINDIA2021-76017.
90.
Al Hamad
,
S.
,
Habash
,
O.
,
Hasan
,
A.
, and
Amano
,
R. S.
,
2022
, “
Effect of the J-Shaped Wind Turbine Airfoil Opening Ratio and Thickness on the Performance of Symmetrical Airfoils
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051303
.
91.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
92.
Dilimulati
,
A.
,
Stathopoulos
,
T.
, and
Paraschivoiu
,
M.
,
2018
, “
Wind Turbine Designs for Urban Applications: A Case Study of Shrouded Diffuser Casing for Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
179
192
.
93.
Casini
,
M.
,
2016
, “
Small Vertical Axis Wind Turbines for Energy Efficiency of Buildings
,”
J. Clean Energy Technol.
,
4
(
1
), pp.
56
65
.
94.
Chen
,
L.
, and
MacDonald
,
E.
,
2014
, “
A System-Level Cost-of-Energy Wind Farm Layout Optimization With Landowner Modelling
,”
Energy Convers. Manage.
,
77
, pp.
484
494
.
95.
Kozmar
,
H.
,
Allori
,
D.
,
Bartoli
,
G.
, and
Borri
,
C.
,
2018
, “
Wind Characteristics in Wind Farms Situated on Hilly Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
404
410
.
96.
Stanley
,
A. P. J.
,
Ning
,
A.
, and
Dykes
,
K.
,
2019
, “
Optimization of Turbine Design in Wind Farms With Multiple Hub Height, Using Exact Analytic Gradients and Structural Constraints
,”
Wind Energy
,
22
(
5
), pp.
605
619
.
97.
Mohan
,
M.
,
Kansagara
,
D. D.
,
Sharma
,
D.
, and
Saha
,
U. K.
,
2021
, “
Estimating the Aerodynamic Coefficient of a Savonius Rotor Blade Profile Developed Through the Simplex Search Method
,”
Proceedings of the ASME 2021 Gas Turbine India Conference, Virtual Online
,
Dec. 2–3
, p.
V001T09A003
, Paper No. GTINIDA2021-75990.
98.
Siram
,
O.
, and
Sahoo
,
N.
,
2022
, “
Performance Assessment of Straight and Linearly Tapered Rotors Through Wind Tunnel Investigation for Off-Grid Applications
,”
Wind Eng.
99.
İlhan
,
A.
,
Zontul
,
H.
,
Tümse
,
S.
,
Bilgili
,
M.
, and
Şahin
,
B.
,
2021
, “
Flow Analyses of Diffuser Augmented Wind Turbines
,”
Energy Sources Part A
, pp.
1
25
.
100.
İlhan
,
A.
,
Tumse
,
S.
,
Oguz Tasci
,
M.
,
Bilgili
,
M.
, and
Sahin
,
B.
,
2022
, “
'Particle Image Velocimetry Investigation of the Flow for the Curved Type Wind Turbine Shroud
,”
J. Appl. Fluid Mech.
,
15
(
2
), pp.
373
385
.
101.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2019
, “
Definition and Interpretation of Wind Farm Efficiency in Complex Terrain: A Discussion
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
055501
.
You do not currently have access to this content.