Abstract

Organic Rankine cycle (ORC) is a promising technology to convert low- and medium-temperature energy into power. Identifying the optimal working fluids and heat source temperature are always the focuses in the ORC field. This paper presents a new methodology to evaluate the thermodynamic performance of ORC with different working fluids and identify the optimal heat source temperature. Initially, the parameterization model is developed to characterize the working fluids by thermodynamic property parameters including critical temperature (Tc), critical pressure (pc), acentric factor (ω), and ideal gas isobaric heat capacity (cp0). Subsequently, the simultaneous optimization of thermodynamic property parameters and cycle parameters is conducted to obtain the thermodynamic performance limits of simple and regenerative ORCs at six typical geothermal heat source temperatures. By comparing the thermodynamic performance limits of ORC under different heat source temperatures, the optimal heat source temperature is identified. Then, ten commonly used working fluids are selected as reference working fluids, and the thermodynamic property parameters comparisons between reference and ideal working fluids, which can be characterized by the optimized thermodynamic property parameters, are investigated. Finally, multiple linear regression models are developed to evaluate the thermodynamic performance. The numerical differences of thermodynamic property parameters between the ideal reference and reference working fluids are chosen as initial variables, while the thermal efficiency and volumetric power output are used as thermodynamic performance indicators. The results show that the optimal heat source temperature is 250 °C, which is independent of cycle configuration. The thermodynamic performance of ORCs can be evaluated accurately by the multiple linear regression models. The maximum relative error of the multiple linear regression models is 3.02%. Moreover, Tc is the most dominant thermodynamic property parameter.

References

1.
Yan
,
D.
,
Yang
,
F. B.
,
Yang
,
F. F.
,
Zhang
,
H. G.
,
Guo
,
Z. Y.
,
Li
,
J.
, and
Wu
,
Y. T.
,
2021
, “
Identifying the Key System Parameters of the Organic Rankine Cycle Using the Principal Component Analysis Based on an Experimental Database
,”
Energy Convers. Manage.
,
240
, p.
114252
.
2.
Gogoi
,
T. K.
, and
Hazarika
,
P.
,
2020
, “
Comparative Assessment of Four Novel Solar Based Triple Effect Absorption Refrigeration Systems Integrated With Organic Rankine and Kalina Cycles
,”
Energy Convers. Manage.
,
226
, p.
113561
.
3.
Oyekale
,
J.
,
Petrollese
,
M.
,
Heberle
,
F.
,
Bruggemann
,
D.
, and
Cau
,
G.
,
2020
, “
Exergetic and Integrated Exergoeconomic Assessments of a Hybrid Solar-Biomass Organic Rankine Cycle Cogeneration Plant
,”
Energy Convers. Manage.
,
215
, p.
112905
.
4.
Ahmadi
,
A.
,
El Haj Assad
,
M.
,
Jamali
,
D. H.
,
Kumar
,
R.
,
Li
,
Z. X.
,
Salameh
,
T.
,
Al-Shabi
,
M.
, and
Ehyaei
,
M. A.
,
2020
, “
Applications of Geothermal Organic Rankine Cycle for Electricity Production
,”
J. Clean. Prod.
,
274
, p.
122950
.
5.
Chatzopoulou
,
M. A.
, and
Markides
,
C. N.
,
2018
, “
Thermodynamic Optimisation of a High-Electrical Efficiency Integrated Internal Combustion Engine—Organic Rankine Cycle Combined Heat and Power System
,”
Appl. Energy
,
226
, pp.
1229
1251
.
6.
Loni
,
R.
,
Najafi
,
G.
,
Bellos
,
E.
,
Rajaee
,
F.
,
Said
,
Z.
, and
Mazlan
,
M.
,
2020
, “
A Review of Industrial Waste Heat Recovery System for Power Generation With Organic Rankine Cycle: Recent Challenges and Future Outlook
,”
J. Cleaner Prod.
,
11
, p.
125070
.
7.
Xu
,
Y. H.
,
Zhang
,
H. G.
,
Yang
,
F. B.
,
Tong
,
L.
,
Yang
,
Y. F.
,
Yan
,
D.
,
Wang
,
C. Y.
,
Ren
,
J.
, and
Wu
,
Y. T.
,
2021
, “
Experimental Study on Small Power Generation Energy Storage Device Based on Pneumatic Motor and Compressed Air
,”
Energy Convers. Manage.
,
234
, p.
113949
.
8.
Stijepovic
,
M. Z.
,
Linke
,
P.
,
Papadopoulos
,
A. I.
, and
Grujic
,
A. C.
,
2012
, “
On the Role of Working Fluid Properties in Organic Rankine Cycle Performance
,”
Appl. Therm. Eng.
,
36
, pp.
406
413
.
9.
Vivian
,
J.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2015
, “
A General Framework to Select Working Fluid and Configuration of ORCs for Low-to-Medium Temperature Heat Sources
,”
Appl. Energy
,
156
, pp.
727
746
.
10.
Wang
,
E. H.
,
Zhang
,
H. G.
,
Fan
,
B. Y.
,
Ouyang
,
M. G.
,
Zhao
,
Y.
, and
Mu
,
Q. H.
,
2011
, “
Study of Working Fluid Selection of Organic Rankine Cycle (ORC) for Engine Waste Heat Recovery
,”
Energy
,
36
(
5
), pp.
3406
3418
.
11.
Zerom
,
M. S.
, and
Gonca
,
G.
,
2020
, “
Multi-Criteria Performance Analysis of Dual Miller Cycle—Organic Rankine Cycle Combined Power Plant
,”
Energy Convers. Manage.
,
221
, p.
113121
.
12.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.
13.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle Bertrand
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
14.
Roskosch
,
D.
, and
Atakan
,
B.
,
2015
, “
Reverse Engineering of Fluid Selection for Thermodynamic Cycles With Cubic Equations of State, Using a Compression Heat Pump as Example
,”
Energy
,
81
, pp.
202
212
.
15.
Brown
,
J. S.
,
Brignoli
,
R.
, and
Daubman
,
S.
,
2014
, “
Methodology for Estimating Thermodynamic Parameters and Performance of Working Fluids for Organic Rankine Cycles
,”
Energy
,
73
, pp.
818
828
.
16.
Peng
,
Y. N.
,
Su
,
W.
,
Zhou
,
N. J.
, and
Zhao
,
L.
,
2020
, “
How to Evaluate the Performance of Sub-Critical Organic Rankine Cycle From Key Properties of Working Fluids by Group Contribution Methods?
Energy Convers. Manage.
,
221
, p.
113204
.
17.
Abrosimov
,
K. A.
,
Baccioli
,
A.
, and
Bischi
,
A.
,
2020
, “
Techno-Economic Analysis of Combined Inverted Brayton—Organic Rankine Cycle for High-Temperature Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112336
.
18.
Zhao
,
J.
,
Hu
,
L. K.
,
Wang
,
Y. Z.
,
Yin
,
H. M.
,
Deng
,
S.
,
Li
,
W. J.
,
Du
,
Y. P.
, and
An
,
Q. S.
,
2019
, “
How to Rapidly Predict the Performance of ORC: Optimal Empirical Correlation Based on Cycle Separation
,”
Energy Convers. Manage.
,
188
, pp.
86
93
.
19.
Lukawski
,
M.
,
DiPippo
,
R.
, and
Tester
,
J. W.
,
2018
, “
Molecular Property Methods for Assessing Efficiency of Organic Rankine Cycles
,”
Energy
,
142
, pp.
108
120
.
20.
Wang
,
Z. Q.
,
Hu
,
Y. H.
,
Xia
,
X. X.
,
Zuo
,
Q. S.
,
Zhao
,
B.
, and
Li
,
Z. X.
,
2020
, “
Thermo-Economic Selection Criteria of Working Fluid Used in Dual-Loop ORC for Engine Waste Heat Recovery by Multi-Objective Optimization
,”
Energy
,
197
, p.
117053
.
21.
Wang
,
M. T.
,
Zhang
,
J.
,
Liu
,
Q. Y.
, and
Tan
,
L. Z.
,
2020
, “
Effects of Critical Temperature, Critical Pressure and Dryness of Working Fluids on the Performance of the Transcritical Organic Rankine Cycle
,”
Energy
,
202
, p.
117663
.
22.
Brignoli
,
R.
, and
Brown
,
J. S.
,
2015
, “
Organic Rankine Cycle Model for Well-Described and Not-So-Well-Described Working Fluid
,”
Energy
,
86
, pp.
93
104
.
23.
Wang
,
Q. L.
,
Wang
,
J. Q.
,
Li
,
T. L.
, and
Meng
,
N.
,
2020
, “
Techno-Economic Performance of Two-Stage Series Evaporation Organic Rankine Cycle With Dual-Level Heat Sources
,”
Appl. Therm. Eng.
,
171
, p.
115078
.
24.
Rad
,
E. A.
,
Mohammadi
,
S.
, and
Tayyeban
,
E.
,
2020
, “
Simultaneous Optimization of Working Fluid and Boiler Pressure in an Organic Rankine Cycle for Different Heat Source Temperatures
,”
Energy
,
194
, p.
116856
.
25.
Li
,
J.
,
Ge
,
Z.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2019
, “
Design and Performance Analyses for a Novel Organic Rankine Cycle With Supercritical-Subcritical Heat Absorption Process Coupling
,”
Appl. Energy
,
235
, pp.
1400
1414
.
26.
Yang
,
F. F.
,
Yang
,
F. B.
,
Chu
,
Q. F.
,
Liu
,
Q.
,
Yang
,
Z.
, and
Duan
,
Y. Y.
,
2020
, “
Thermodynamic Performance Limits of the Organic Rankine Cycle: Working Fluid Parameterization Based on Corresponding States Modeling
,”
Energy Convers. Manage.
,
217
, p.
113011
.
27.
Yang
,
F. B.
,
Yang
,
F. F.
,
Li
,
J.
,
Hu
,
S. Z.
,
Yang
,
Z.
, and
Duan
,
Y. Y.
,
2021
, “
Analysis of the Thermodynamic Performance Limits of the Organic Rankine Cycle in Low and Medium Temperature Heat Source Applications
,”
Sci. China: Technol. Sci.
,
64
(
8
), pp.
1624
1640
.
28.
Favier
,
A.
,
Lardeaux
,
J. M.
,
Corsini
,
M.
,
Verati
,
C.
,
Navelot
,
V.
,
Geraud
,
Y.
,
Diraison
,
M.
,
Ventalon
,
S.
, and
Voitus
,
E.
,
2021
, “
Characterization of an Exhumed High-Temperature Hydrothermal System and Its Application for Deep Geothermal Exploration: An Example From Terre-de-Haut Island (Guadeloupe Archipelago, Lesser Antilles Volcanic Arc)
,”
J. Volcanol. Geotherm. Res.
,
418
, p.
107256
.
29.
Sanchee-Avila
,
J. I.
,
Garcia-Sanchez
,
B. E.
,
Vara-Castro
,
G. M.
, and
Kretzschmar
,
T.
,
2021
, “
Distribution and Origin of Organic Compounds in the Condensates From a Mexican High-Temperature Geothermal Field
,”
Geothermics
,
89
, p.
101980
.
30.
Tian
,
J.
,
Pang
,
Z. H.
,
Wang
,
Y. C.
, and
Guo
,
Q.
,
2019
, “
Fluid Geochemistry of the Cuopu High Temperature Geothermal System in the Eastern Himalayan Syntaxis With Implication on Its Genesis
,”
Appl. Geochem.
,
110
, p.
104422
.
31.
Yang
,
F. F.
,
Liu
,
Q.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2018
, “
On the Temperature Dependence of the a Function in the Cubic Equation of State
,”
Chem. Eng. Sci.
,
192
, pp.
565
575
.
32.
Soave
,
G.
,
1972
, “
Equilibrium Constants From a Modified Redlich-Kwong Equation of State
,”
Chem. Eng. Sci.
,
27
(
6
), pp.
1197
1203
.
33.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2015
, “
Potential of Organic Rankine Cycle Technology in India: Working Fluid Selection and Feasibility Study
,”
Energy
,
90
, pp.
1618
1625
.
34.
Imran
,
M.
,
Park
,
B. S.
,
Kim
,
H. J.
,
Lee
,
D. H.
,
Usman
,
M.
, and
Heo
,
M.
,
2014
, “
Thermo-Economic Optimization of Regenerative Organic Rankine Cycle for Waste Heat Recovery Applications
,”
Energy Convers. Manage.
,
87
, pp.
107
118
.
35.
Yang
,
F. B.
,
Zhang
,
H. G.
,
Bei
,
C.
,
Song
,
S. S.
, and
Wang
,
E. H.
,
2015
, “
Parametric Optimization and Performance Analysis of ORC (Organic Rankine Cycle) for Diesel Engine Waste Heat Recovery with a Fin-and-Tube Evaporator
,”
Energy
,
91
, pp.
128
141
.
36.
Wang
,
E. H.
,
Zhang
,
H. G.
,
Fan
,
B. Y.
, and
Wu
,
Y. T.
,
2012
, “
Optimized Performances Comparison of Organic Rankine Cycles for Low Grade Waste Heat Recovery
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2301
2312
.
37.
Brown
,
JS
,
2007
, “
Predicting Performance of Refrigerants Using the Peng-Robinson Equation of State
,”
Int. J. Refrig.
,
30
(
8
), pp.
1319
1328
.
38.
Quoilin
,
S.
,
van den Broek
,
M.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
You do not currently have access to this content.