Abstract

Hydrous ethanol application in engines can not only improve combustion and reduce emissions but also save energy consumption in the production process, which is a potential alternative fuel for engines. However, little research has been conducted on the influences of hydrous ethanol, gasoline, and hydrous ethanol–gasoline blends on spray characteristics, especially the phenomenon of flash boiling. In this investigation, the spray characteristics of hydrous ethanol and gasoline have been conducted using a constant volume chamber system, and the spray characteristics of hydrous ethanol–gasoline blends have been simulated using validated models. The results show that hydrous ethanol fuel is more likely to enter a flash-boiling state in comparison with gasoline. In addition, the spray penetration of hydrous ethanol is higher than that of gasoline, which increases by 10% approximately under the same temperature. Moreover, the spray cone angle of test fuels is between 32 deg and 43 deg and decreases with the increase of back pressure in trend. Besides, the spray projection area of hydrous ethanol and gasoline decreases significantly with the increase of back pressure. In terms of simulation, the spray penetration of E10w, E20w, E50w, and E85w fuels decreases with the increase of back pressure.

References

1.
Ren
,
C.
,
Ge
,
Z.
,
Zhao
,
M.
,
Wang
,
R.
,
Huang
,
L.
, and
Guo
,
L.
,
2022
, “
Experimental Investigation on Supercritical Water Partial Oxidation of Ethanol: Explore the Way to Complete Gasification of Ethanol
,”
Fuel
,
307
, p.
121804
.
2.
Yu
,
X.
,
Zhao
,
Z.
,
Huang
,
Y.
,
Shi
,
W.
,
Guo
,
Z.
,
Li
,
Z.
,
Du
,
Y.
, et al
,
2021
, “
Experimental Study on the Effects of EGR on Combustion and Emission of an SI Engine With Gasoline Port Injection Plus Ethanol Direct Injection
,”
Fuel
,
305
, p.
121421
.
3.
Chen
,
Z.
,
He
,
J.
,
Chen
,
H.
,
Geng
,
L.
, and
Zhang
,
P.
,
2021
, “
Comparative Study on the Combustion and Emissions of Dual-Fuel Common Rail Engines Fueled With Diesel/Methanol, Diesel/Ethanol, and Diesel/n-Butanol
,”
Fuel
,
304
, p.
121360
.
4.
Yang
,
R.
,
Chen
,
Y.
,
Wu
,
Y.
,
Hua
,
D.
,
Yang
,
M.
,
Li
,
C.
,
Chen
,
Z.
, and
Liu
,
J.
,
2013
, “
Production of Liquid Fuel Via Coliquefaction of Coal and Dunaliella Tertiolecta in a Sub-/Supercritical Water–Ethanol System
,”
Energy Fuels
,
27
(
5
), pp.
2619
2627
.
5.
Liu
,
Y.
,
Tang
,
C.
,
Zhan
,
C.
,
Wu
,
Y.
,
Yang
,
M.
, and
Huang
,
Z.
,
2019
, “
Low Temperature Auto-Ignition Characteristics of Methylcyclohexane/Ethanol Blend Fuels: Ignition Delay Time Measurement and Kinetic Analysis
,”
Energy
,
177
, pp.
465
475
.
6.
Zhan
,
C.
,
Feng
,
Z.
,
Ma
,
W.
,
Zhang
,
M.
,
Tang
,
C.
, and
Huang
,
Z.
,
2018
, “
Experimental Investigation on Effect of Ethanol and Di-ethyl Ether Addition on the Spray Characteristics of Diesel/Biodiesel Blends Under High Injection Pressure
,”
Fuel
,
218
, pp.
1
11
.
7.
Du
,
W.
,
Ma
,
Z.
,
Yin
,
Z.
,
Lv
,
E.
,
Liu
,
C.
, and
Hu
,
E.
,
2019
, “
Auto-Ignition and Deflagration Characteristics of Ethanol–Gasoline/Air at High Temperature
,”
Fuel
,
255
, p.
115768
.
8.
Zhang
,
L.
, and
Qi
,
Q.
,
2021
, “
A Reduced Mechanism for the Combustion of Gasoline–Ethanol Blend on Advanced Engine Combustion Modes
,”
Fuel
,
300
, p.
120951
.
9.
Li
,
Y.
,
Lou
,
B.
,
Abubakar
,
S.
, and
Wu
,
G.
,
2021
, “
Skeletal Mechanism for i-Propanol–n-Butanol–Ethanol (IBE) and n-Butanol Combustion in Diesel Engine
,”
Fuel
,
302
, p.
121136
.
10.
Vergel-Ortega
,
M.
,
Valencia-Ochoa
,
G.
, and
Duarte-Forero
,
J.
,
2021
, “
Experimental Study of Emissions in Single-Cylinder Diesel Engine Operating With Diesel–Biodiesel Blends of Palm Oil–Sunflower Oil and Ethanol
,”
Case Stud. Therm. Eng.
,
26
, p.
101190
.
11.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2005
, “
Improving Ethanol Life Cycle Energy Efficiency
by
Direct Combustion of Wet Ethanol in HCCI Engines
,”
Advanced Energy Systems
,
Orlando, FL
,
Nov. 5–11
, pp.
225
234
.
12.
Saffy
,
H. A.
,
Northrop
,
W. F.
,
Kittelson
,
D. B.
, and
Boies
,
A. M.
,
2015
, “
Energy, Carbon Dioxide and Water Use Implications of Hydrous Ethanol Production
,”
Energy Convers. Manage.
,
105
, pp.
900
907
.
13.
Abdollahipoor
,
B.
,
Shirazi
,
S. A.
,
Reardon
,
K. F.
, and
Windom
,
B. C.
,
2018
, “
Near-Azeotropic Volatility Behavior of Hydrous and Anhydrous Ethanol Gasoline Mixtures and Impact on Droplet Evaporation Dynamics
,”
Fuel Process. Technol.
,
181
, pp.
166
174
.
14.
Lanzanova
,
T. D. M.
,
Dalla Nora
,
M.
, and
Zhao
,
H.
,
2016
, “
Performance and Economic Analysis of a Direct Injection Spark Ignition Engine Fueled With Wet Ethanol
,”
Appl. Energy
,
169
, pp.
230
239
.
15.
Bureshaid
,
K. I.
,
Feng
,
D.
,
Vafamehr
,
H.
, and
Zhao
,
H.
,
2018
, “
Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection
,”
World Congress Experience: SAE International
,
Detroit, MI
,
Apr. 10–12
, Paper 2018-01-0655.
16.
Al-Harbi
,
A. A.
,
Alabduly
,
A. J.
,
Alkhedhair
,
A. M.
,
Alqahtani
,
N. B.
, and
Albishi
,
M. S.
,
2022
, “
Effect of Operation Under Lean Conditions on NOx Emissions and Fuel Consumption Fueling an SI Engine With Hydrous Ethanol–Gasoline Blends Enhanced With Synthesis Gas
,”
Energy
,
238
, p.
121694
.
17.
Parag
,
S.
, and
Raghavan
,
V.
,
2009
, “
Experimental Investigation of Burning Rates of Pure Ethanol and Ethanol Blended Fuels
,”
Combust. Flame
,
156
(
5
), pp.
997
1005
.
18.
Breaux
,
B. B.
, and
Acharya
,
S.
,
2013
, “
The Effect of Elevated Water Content on Swirl-Stabilized Ethanol/Air Flames
,”
Fuel
,
105
, pp.
90
102
.
19.
Aleiferis
,
P. G.
,
Shukla
,
J.
,
Brewer
,
M.
, and
Cracknell
,
R. F.
,
2021
, “
Spray Development of iso-Octane, Ethanol, Hydrous Ethanol and Water From a Multi-hole Injector Under Ultra Cold Fuel Temperature Conditions
,”
Fuel
,
303
, p.
120983
.
20.
Li
,
T.
,
Zhang
,
X.
,
Wang
,
B.
,
Guo
,
T.
,
Shi
,
Q.
, and
Zheng
,
M.
,
2017
, “
Characteristics of Non-Evaporating, Evaporating and Burning Sprays of Hydrous Ethanol Diesel Emulsified Fuels
,”
Fuel
,
191
, pp.
251
265
.
21.
Zhang
,
X.
,
Li
,
T.
,
Wang
,
B.
, and
Wei
,
Y.
,
2018
, “
Superheat Limit and Micro-Explosion in Droplets of Hydrous Ethanol–Diesel Emulsions at Atmospheric Pressure and Diesel-Like Conditions
,”
Energy
,
154
, pp.
535
543
.
22.
Sun
,
Z.
,
Wang
,
H.
,
Cui
,
M.
,
Nour
,
M.
,
Li
,
X.
, and
Xu
,
M.
,
2021
, “
Investigation of Flash Boiling Injection Schemes in Lean-Burn Gasoline Direct Injection Engines
,”
Appl. Energy Combust. Sci.
,
7
, p.
100035
.
23.
Xiao
,
D.
,
Qiu
,
S.
,
Zhang
,
X.
,
Zhang
,
Y.
,
Li
,
X.
,
Hung
,
D.
, and
Xu
,
M.
,
2022
, “
Dynamic Behavior and Mechanism Analysis of Tip Wetting Process Under Flash Boiling Conditions
,”
Fuel
,
307
, p.
121773
.
24.
Sun
,
Z.
,
Xu
,
Q.
,
Cui
,
M.
,
Nour
,
M.
,
Li
,
X.
,
Hung
,
D. L. S.
, and
Xu
,
M.
,
2021
, “
Impact of Flash Boiling Multiple Injections Timing on the Combustion and Thermal Efficiency of a Gasoline Direct Injection Engine Under Lean-Burn
,”
Fuel
,
304
, p.
121450
.
25.
Zeng
,
Y.
, and
Lee
,
C. F.
,
2007
, “
Modeling Droplet Breakup Processes Under Micro-Explosion Conditions
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2185
2193
.
26.
Fan
,
Y.
,
Sun
,
Z.
,
Gu
,
Q.
,
Xu
,
Q.
,
Li
,
X.
, and
Xu
,
M.
,
2021
, “
Combustion Improved by Using Flash Boiling Sprays in an Ethanol–Gasoline Optical Engine Under Cold Operating Conditions
,”
Energy Fuel
,
35
(
12
), pp.
10134
10145
.
27.
Badawy
,
T.
,
Xu
,
H.
, and
Li
,
Y.
,
2022
, “
Macroscopic Spray Characteristics of iso-Octane, Ethanol, Gasoline and Methanol From a Multi-Hole Injector Under Flash Boiling Conditions
,”
Fuel
,
307
, p.
121820
.
28.
Li
,
Y.
,
Guo
,
H.
,
Zhou
,
Z.
,
Zhang
,
Z.
,
Ma
,
X.
, and
Chen
,
L.
,
2019
, “
Spray Morphology Transformation of Propane, n-Hexane and iso-Octane Under Flash-Boiling Conditions
,”
Fuel
,
236
, pp.
677
685
.
29.
Chang
,
M.
,
Lee
,
Z.
,
Park
,
S.
, and
Park
,
S.
,
2020
, “
Characteristics of Flash Boiling and Its Effects on Spray Behavior in Gasoline Direct Injection Injectors: A Review
,”
Fuel
,
271
, p.
117600
.
30.
Serras-Pereira
,
J.
,
van Romunde
,
Z.
,
Aleiferis
,
P. G.
,
Richardson
,
D.
,
Wallace
,
S.
, and
Cracknell
,
R. F.
,
2010
, “
Cavitation, Primary Break-Up and Flash Boiling of Gasoline, iso-Octane and n-Pentane With a Real-Size Optical Direct-Injection Nozzle
,”
Fuel
,
89
(
9
), pp.
2592
2607
.
31.
Guo
,
H.
,
Nocivelli
,
L.
, and
Torelli
,
R.
,
2021
, “
Numerical Study on Spray Collapse Process of ECN Spray G Injector Under Flash Boiling Conditions
,”
Fuel
,
290
, p.
119961
.
32.
Du
,
J.
,
Mohan
,
B.
,
Sim
,
J.
,
Fang
,
T.
, and
Roberts
,
W. L.
,
2020
, “
Study of Spray Collapse Phenomenon at Flash Boiling Conditions Using Simultaneous Front and Side View Imaging
,”
Int. J. Heat Mass Transfer
,
147
, p.
118824
.
33.
Xu
,
Q.
,
Pan
,
H.
,
Gao
,
Y.
,
Li
,
X.
, and
Xu
,
M.
,
2019
, “
Investigation of Two-Hole Flash-Boiling Plume-to-Plume Interaction and Its Impact on Spray Collapse
,”
Int. J. Heat Mass Transfer
,
138
, pp.
608
619
.
34.
Guo
,
H.
,
Li
,
Y.
,
Lu
,
X.
,
Zhou
,
Z.
,
Xu
,
H.
, and
Wang
,
Z.
,
2019
, “
Radial Expansion of Flash Boiling Jet and Its Relationship With Spray Collapse in Gasoline Direct Injection Engine
,”
Appl. Therm. Eng.
,
146
, pp.
515
525
.
35.
Guo
,
H.
,
Ding
,
H.
,
Li
,
Y.
,
Ma
,
X.
,
Wang
,
Z.
,
Xu
,
H.
, and
Wang
,
J.
,
2017
, “
Comparison of Spray Collapses at Elevated Ambient Pressure and Flash Boiling Conditions Using Multi-Hole Gasoline Direct Injector
,”
Fuel
,
199
, pp.
125
134
.
36.
Li
,
Y.
,
Guo
,
H.
,
Fei
,
S.
,
Ma
,
X.
,
Zhang
,
Z.
,
Chen
,
L.
,
Feng
,
L.
, and
Wang
,
Z.
,
2018
, “
An Exploration on Collapse Mechanism of Multi-Jet Flash-Boiling Sprays
,”
Appl. Therm. Eng.
,
134
, pp.
20
28
.
37.
Zhou
,
Z.
,
Li
,
Y.
,
Zhang
,
J.
,
Wang
,
Y.
,
Yan
,
F.
, and
Xu
,
H.
,
2022
, “
Effects of Component Proportions on Multi-Jet Instant Expansion of Binary Solutions Under Flash Boiling Conditions
,”
Fuel
,
308
, p.
122018
.
38.
Deng
,
X.
,
Chen
,
Z.
,
Wang
,
X.
,
Zhen
,
H.
, and
Xie
,
R.
,
2018
, “
Exhaust Noise, Performance and Emission Characteristics of Spark Ignition Engine Fuelled With Pure Gasoline and Hydrous Ethanol Gasoline Blends
,”
Case Stud. Therm. Eng.
,
12
, pp.
55
63
.
39.
Koç
,
M.
,
Sekmen
,
Y.
,
Topgül
,
T.
, and
Yücesu
,
H. S.
,
2009
, “
The Effects of Ethanol–Unleaded Gasoline Blends on Engine Performance and Exhaust Emissions in a Spark-Ignition Engine
,”
Renewable Energy
,
34
(
10
), pp.
2101
2106
.
40.
Costa
,
R. C.
, and
Sodré
,
J. R.
,
2011
, “
Compression Ratio Effects on an Ethanol/Gasoline Fuelled Engine Performance
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
278
283
.
41.
Shi
,
X.
,
Qian
,
W.
,
Luo
,
H.
,
Wang
,
Q.
, and
Ni
,
J.
,
2021
, “
Effect of Water Content of Hydrous Ethanol on Chemical Kinetic Characteristics Based on the New Developed Reduced Ethanol–Toluene Reference Fuels Mechanism
,”
Fuel
,
303
, p.
121201
.
42.
Mitroglou
,
N.
,
Nouri
,
J.
, and
Arcoumanis
,
C.
,
2009
, “
Spray Structure From Double Fuel Injection in Multihole Injectors for Gasoline Direct-Injection Engines
,”
Atomization Sprays
,
19
(
6
), pp.
529
545
.
43.
Yoon
,
S. H.
,
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2010
, “
Effect of Biodiesel–Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042201
44.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p. 021001.
45.
Patel
,
C.
,
Hwang
,
J.
,
Chandra
,
K.
,
Agarwal
,
R. A.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2019
, “
In-Cylinder Spray and Combustion Investigations in a Heavy-Duty Optical Engine Fueled With Waste Cooking Oil, Jatropha, and Karanja Biodiesels
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012201
.
You do not currently have access to this content.