Abstract

The combustion process of ventilation air methane (VAM) with air in a tangential coal-fired boiler was investigated by the component transport model. The influence of VAM with different volume fractions of methane (CH4) on the combustion characteristics of the boiler was analyzed. The results indicated that the maximum average temperature in the main combustion area increases to 102 K, with the increasing volume fraction of CH4 in the VAM. Under the same conditions, the distribution of oxygen (O2) volume fraction showed a trend of decay in the main combustion zone, while carbon monoxide (CO) started to increase. Meanwhile, the NO emission at the overfire air decreased from 974.8 mg/m3 to 436.3 mg/m3, with a reduction rate of 55.24%. When the VAM with the CH4 volume fraction of 0.75% was fed into the boiler for combustion in different ways, the furnace temperature would rise and the NO emission would decrease. The concentration of CH4 in the VAM should not be less than 0.01%. The analysis results demonstrated that adding the VAM into the boiler combustion cannot only save resources and protect the environment but also help to reduce the emission of nitrogen oxides.

References

1.
Saunois
,
M.
,
Stavert
,
A. R.
,
Poulter
,
B.
,
Bousquet
,
P.
,
Canadell
,
J. G.
,
Jackson
,
R. B.
,
Raymond
,
P. A.
,
Dlugokencky
,
E. J.
,
Houweling
,
S.
, and
Patra
,
P. K.
,
2020
, “
The Global Methane Budget 2000–2017
,”
Earth Syst. Sci. Data
,
12
(
3
), pp.
1561
1623
.
2.
Le Fevre
,
C.
,
2017
, “
Methane Emissions: From Blind Spot to Spotlight
.”
3.
Cheng
,
Y.-P.
,
Wang
,
L.
, and
Zhang
,
X.-L.
,
2011
, “
Environmental Impact of Coal Mine Methane Emissions and Responding Strategies in China
,”
Int. J. Greenhouse Gas Control
,
5
(
1
), pp.
157
166
.
4.
Su
,
S.
,
Han
,
J.
,
Wu
,
J.
,
Li
,
H.
,
Worrall
,
R.
,
Guo
,
H.
,
Sun
,
X.
, and
Liu
,
W.
,
2011
, “
Fugitive Coal Mine Methane Emissions at Five Mining Areas in China
,”
Atmos. Environ.
,
45
(
13
), pp.
2220
2232
.
5.
Wang
,
J.
,
Wang
,
R.
,
Zhu
,
Y.
, and
Li
,
J.
,
2018
, “
Life Cycle Assessment and Environmental Cost Accounting of Coal-Fired Power Generation in China
,”
Energy Policy
,
115
, pp.
374
384
.
6.
Jiang
,
X.
,
Mira
,
D.
, and
Cluff
,
D.
,
2018
, “
The Combustion Mitigation of Methane as a Non-CO2 Greenhouse Gas
,”
Prog. Energy Combust. Sci.
,
66
, pp.
176
199
.
7.
Otto
,
I. M.
,
Donges
,
J. F.
,
Cremades
,
R.
,
Bhowmik
,
A.
,
Hewitt
,
R. J.
,
Lucht
,
W.
,
Rockström
,
J.
,
Allerberger
,
F.
,
McCaffrey
,
M.
, and
Doe
,
S. S.
,
2020
, “
Social Tipping Dynamics for Stabilizing Earth’s Climate by 2050
,”
Proc. Natl. Acad. Sci. U.S.A.
,
117
(
5
), pp.
2354
2365
.
8.
Rasheed
,
R.
,
Javed
,
H.
,
Rizwan
,
A.
,
Sharif
,
F.
,
Yasar
,
A.
,
Tabinda
,
A. B.
,
Ahmad
,
S. R.
,
Wang
,
Y.
, and
Su
,
Y.
,
2021
, “
Life Cycle Assessment of a Cleaner Supercritical Coal-Fired Power Plant
,”
J. Clean. Prod.
,
279
, p.
123869
.
9.
Su
,
S.
, and
Yu
,
X.
,
2015
, “
A 25 kWe Low Concentration Methane Catalytic Combustion Gas Turbine Prototype Unit
,”
Energy
,
79
, pp.
428
438
.
10.
Karakurt
,
I.
,
Aydin
,
G.
, and
Aydiner
,
K.
,
2011
, “
Mine Ventilation Air Methane as a Sustainable Energy Source
,”
Renew. Sustain. Energy Rev.
,
15
(
2
), pp.
1042
1049
.
11.
Su
,
S.
,
Beath
,
A.
,
Guo
,
H.
, and
Mallett
,
C.
,
2005
, “
An Assessment of Mine Methane Mitigation and Utilisation Technologies
,”
Prog. Energy Combust. Sci.
,
31
(
2
), pp.
123
170
.
12.
Dong
,
Z.
,
Li
,
B.
,
Shang
,
H.
,
Zhang
,
P.
,
Chen
,
S.
,
Yang
,
J.
,
Zeng
,
Z.
,
Wang
,
J.
, and
Deng
,
S.
,
2021
, “
Ultramicroporous Carbon Granules With Narrow Pore Size Distribution for Efficient CH4 Separation From Coal-Bed Gases
,”
AlChE J.
,
67
(
9
), p.
e17281
.
13.
Su
,
S.
, and
Agnew
,
J.
,
2006
, “
Catalytic Combustion of Coal Mine Ventilation air Methane
,”
Fuel
,
85
(
9
), pp.
1201
1210
.
14.
Fernández
,
J.
,
Marín
,
P.
,
Díez
,
F. V.
, and
Ordóñez
,
S.
,
2015
, “
Coal Mine Ventilation air Methane Combustion in a Catalytic Reverse Flow Reactor: Influence of Emission Humidity
,”
Fuel Process. Technol.
,
133
, pp.
202
209
.
15.
Yu
,
C.
,
Xiong
,
W.
,
Ma
,
H.
,
Zhou
,
J.
,
Si
,
F.
,
Jiang
,
X.
, and
Fang
,
X.
,
2019
, “
Numerical Investigation of Combustion Optimization in a Tangential Firing Boiler Considering Steam Tube Overheating
,”
Appl. Therm. Eng.
,
154
, pp.
87
101
.
16.
Ren
,
F.
,
Li
,
Z.
,
Liu
,
G.
,
Chen
,
Z.
, and
Zhu
,
Q.
,
2011
, “
Numerical Simulation of Flow and Combustion Characteristics in a 300 MWe Down-Fired Boiler With Different Overfire Air Angles
,”
Energy Fuels
,
25
(
4
), pp.
1457
1464
.
17.
Somarathne
,
K. D. K. A.
,
Okafor
,
E. C.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Emission Characteristics of Turbulent Non-Premixed Ammonia/Air and Methane/Air Swirl Flames Through a Rich-Lean Combustor Under Various Wall Thermal Boundary Conditions at High Pressure
,”
Combust. Flame
,
210
, pp.
247
261
.
18.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.
19.
Jameel
,
A. G. A.
,
Dahiphale
,
C.
,
Alquaity
,
A. B.
,
Zahid
,
U.
, and
Jayanti
,
S.
,
2021
, “
Numerical Simulation of Coal Combustion in a Tangential Pulverized Boiler: Effect of Burner Vertical Tilt Angle
,”
Arabian J. Sci. Eng.
, pp.
1
14
.
20.
Chen
,
K.
,
Liu
,
X.
, and
Qin
,
Y.
,
2020
, “
Numerical Study on the Influence of Platen Super-Heater on Combustion Characteristics in a 600 MW Tangentially Fired Pulverized-Coal Boiler
,”
Therm. Sci.
,
25
(
2 Part A
), pp.
833
843
.
21.
Sidey
,
J.
,
Mastorakos
,
E.
, and
Gordon
,
R.
,
2014
, “
Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted With Hot Products
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
453
465
.
22.
Zeng
,
W.
,
Ma
,
H.
,
Liang
,
Y.
, and
Hu
,
E.
,
2015
, “
Experimental and Modeling Study on Effects of N2 and CO2 on Ignition Characteristics of Methane/Air Mixture
,”
J. Adv. Res.
,
6
(
2
), pp.
189
201
.
23.
Asotani
,
T.
,
Yamashita
,
T.
,
Tominaga
,
H.
,
Uesugi
,
Y.
,
Itaya
,
Y.
, and
Mori
,
S.
,
2008
, “
Prediction of Ignition Behavior in a Tangentially Fired Pulverized Coal Boiler Using CFD
,”
Fuel
,
87
(
4–5
), pp.
482
490
.
24.
Li
,
Z.
,
Miao
,
Z.
,
Zhou
,
Y.
,
Wen
,
S.
, and
Li
,
J.
,
2018
, “
Influence of Increased Primary Air Ratio on Boiler Performance in a 660 MW Brown Coal Boiler
,”
Energy
,
152
, pp.
804
817
.
25.
Sun
,
W.
,
Zhong
,
W.
,
Yu
,
A.
,
Liu
,
L.
, and
Qian
,
Y.
,
2016
, “
Numerical Investigation on the Flow, Combustion, and NOx Emission Characteristics in a 660 MWe Tangential Firing Ultra-Supercritical Boiler
,”
Adv. Mech. Eng.
,
8
(
2
), p.
1687814016630729
.
26.
Purnomo
,
F.
, and
Setiyawan
,
A.
,
2019
, “
Numerical Study on In-Furnace Blending Coal Combustion Characteristics in a 625 MW Tangentially Fired Pulverized Coal Boiler
,”
AIP Conf. Proc.
,
2187
(
1
), p.
020038
.
27.
Sankar
,
G.
,
Dhannina
,
C. S.
, and
Balasubramanian
,
K.
,
2020
, “
Numerical Simulation of the Heat Transfer and NOx Emissions in a 660 MW Tangentially Fired Pulverised-Coal Supercritical Boiler
,”
Heat Mass Transfer
,
56
(
9
), pp.
2693
2709
.
28.
Yadav
,
S.
, and
Mondal
,
S.
,
2021
, “
Numerical Investigation of 660 MW Pulverized Coal-Fired Supercritical Power Plant Retrofitted to Oxy-Coal Combustion
,”
Int. J. Greenhouse Gas Control
,
105
, p.
103227
.
29.
Wang
,
J.
,
Zhang
,
R.
,
Yang
,
F.
, and
Cheng
,
F.
,
2020
, “
Numerical Simulation on Optimization of Structure and Operating Parameters of a Novel Lean Coal Decoupling Burner
,”
Chin. J. Chem. Eng.
,
28
(
11
), pp.
2890
2899
.
30.
Hill
,
S.
, and
Smoot
,
L. D.
,
2000
, “
Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
417
458
.
31.
Díez
,
L. I.
,
Cortés
,
C.
, and
Pallarés
,
J.
,
2008
, “
Numerical Investigation of NOx Emissions From a Tangentially-Fired Utility Boiler Under Conventional and Overfire Air Operation
,”
Fuel
,
87
(
7
), pp.
1259
1269
.
You do not currently have access to this content.