Abstract

Polymer flooding is widely applied to enhance oil recovery in sandstone reservoirs. However, applications in carbonate formations are challenged by the possible high adsorption of anionic polymers such as polyacrylamides and xanthan gum. Non-ionic biopolymers such as guar gum could be used to minimize retention. Many investigations using guar flooding have been conducted, but none targeted carbonate reservoirs. This work compares oil recovery improvement, water production delay, mobility control, injectivity, and polymer utilization in carbonate core flooding at reservoir conditions (salinity of 30,905 ppm and 60 °C) with xanthan (700 ppm) and guar (2500 ppm) solutions. A rheological study was performed to select target polymer concentration and solution viscosity. Indiana limestone and light mineral oil (viscosity of 6.55 ± 0.05 mPa · s at 60 °C) were used to represent the reservoir rock and oil. Guar flooding led to faster oil recovery, water production delay, and better injectivity than xanthan flooding, although the polymer utilization factor was higher. The ultimate oil recovery increased by 12.7 ± 7.0% and 9.0 ± 6.1% over waterflooding after guar and xanthan injections. The inferior performance of xanthan gum can be attributed to higher retention, especially close to the core inlet (residual resistance factor of 28 ± 4), and lower in-situ viscosity. The results suggest that guar may be a promising candidate for polymer flooding in carbonate reservoirs at moderate temperatures and salinities. In contrast, xanthan applications in these reservoirs must be carefully evaluated due to its high retention potential.

References

1.
Sheng
,
J. J.
,
Leonhardt
,
B.
, and
Azri
,
N.
,
2015
, “
Status of Polymer-Flooding Technology
,”
J. Can. Pet. Technol.
,
54
(
2
), pp.
116
126
.
2.
Sorbie
,
K. S.
,
1991
,
Polymer-Improved Oil Recovery
,
Springer
,
Netherlands
.
3.
Liu
,
G.
,
Meng
,
Z.
,
Li
,
X.
,
Gu
,
D.
,
Yang
,
D.
, and
Yin
,
H.
,
2019
, “
Experimental and Numerical Evaluation of Water Control and Production Increase in a Tight Gas Formation With Polymer
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102903
4.
Zhong
,
H.
,
He
,
Y.
,
Yang
,
E.
,
Bi
,
Y.
, and
Yang
,
T.
,
2022
, “
Modeling of Microflow During Viscoelastic Polymer Flooding in Heterogenous Reservoirs of Daqing Oilfield
,”
J. Pet. Sci. Eng.
,
210
, p.
110091
.
5.
Saleh
,
L. D.
,
Wei
,
M.
,
Zhang
,
Y.
, and
Bai
,
B.
,
2017
, “
Data Analysis for Polymer Flooding That Is Based on a Comprehensive Database
,”
SPE Reserv. Eval. Eng.
,
20
(
4
), pp.
876
893
.
6.
Kang
,
P. S.
,
Lim
,
J. S.
, and
Huh
,
C.
,
2021
, “
Temperature Dependence of the Shear-Thinning Behavior of Partially Hydrolyzed Polyacrylamide Solution for Enhanced Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
063002
.
7.
Pu
,
W.
,
Shen
,
C.
,
Wei
,
B.
,
Yang
,
Y.
, and
Li
,
Y.
,
2018
, “
A Comprehensive Review of Polysaccharide Biopolymers for Enhanced Oil Recovery (EOR) From Flask to Field
,”
J. Ind. Eng. Chem.
,
61
, pp.
1
11
.
8.
Kamal
,
M. S.
,
Sultan
,
A. S.
,
Al-Mubaiyedh
,
U. A.
, and
Hussein
,
I. A.
,
2015
, “
Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems
,”
Polym. Rev.
,
55
(
3
), pp.
491
530
.
9.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032915
.
10.
Zhong
,
H.
,
Li
,
Y.
,
Zhang
,
W.
,
Yin
,
H.
,
Lu
,
J.
, and
Guo
,
D.
,
2018
, “
Microflow Mechanism of Oil Displacement by Viscoelastic Hydrophobically Associating Water-Soluble Polymers in Enhanced Oil Recovery
,”
Polymers (Basel)
,
10
(
6
), p.
628
.
11.
Jang
,
H. Y.
,
Zhang
,
K.
,
Chon
,
B. H.
, and
Choi
,
H. J.
,
2014
, “
Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution
,”
J. Ind. Eng. Chem.
,
21
, pp.
741
745
.
12.
Liang
,
K.
,
Han
,
P.
,
Chen
,
Q.
,
Su
,
X.
, and
Feng
,
Y.
,
2019
, “
Comparative Study on Enhancing Oil Recovery Under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer
,”
ACS Omega
,
4
(
6
), pp.
10620
10628
.
13.
Standnes
,
D. C.
, and
Skjevrak
,
I.
,
2014
, “
Literature Review of Implemented Polymer Field Projects
,”
J. Pet. Sci. Eng.
,
122
, pp.
761
775
.
14.
Seright
,
R. S.
, and
Henrici
,
B. J.
,
1990
, “
Xanthan Stability at Elevated Temperatures
,”
Soc. Pet. Eng. Reserv. Eng.
,
5
(
1
), pp.
52
60
, .
15.
Wei
,
B.
,
2015
, “
Flow Characteristics of Three Enhanced Oil Recovery Polymers in Porous Media
,”
J. Appl. Polym. Sci.
,
132
, p.
10
.
16.
Alvarado
,
V.
, and
Manrique
,
E.
,
2010
, “
Enhanced Oil Recovery: An Update Review
,”
Energies
,
3
(
9
), pp.
1529
1575
.
17.
Ding
,
M.
,
Han
,
Y.
,
Wang
,
Y.
,
Liu
,
Y.
,
Liu
,
D.
, and
Qu
,
Z.
,
2021
, “
Experimental Investigation of the Heterogeneity Limit for the Application of Polymer Flooding in Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022901
.
18.
Hashmet
,
M. R.
,
Alsumaiti
,
A. M.
,
Qaiser
,
Y.
, and
Alameri
,
S. W.
,
2017
, “
Laboratory Investigation and Simulation Modeling of Polymer Flooding in High-Temperature, High-Salinity Carbonate Reservoirs
,”
Energy and Fuels
,
31
(
12
), pp.
13454
13465
.
19.
Castro
,
R. H.
,
Llanos
,
S.
,
Rodríguez
,
J.
,
Quintero
,
H. I.
, and
Manrique
,
E.
,
2020
, “
Polymers for EOR Application in High Temperature and High Viscosity Oils: Rock–Fluid Behavior
,”
Energies
,
13
(
22
), p.
5944
.
20.
Ferreira
,
V. H. S.
, and
Moreno
,
R. B. Z. L.
,
2020
, “
Experimental Evaluation of Low Concentration Scleroglucan Biopolymer Solution for Enhanced Oil Recovery in Carbonate
,”
Oil Gas Sci. Technol.—Rev. d’IFP Energies Nouv.
,
75
, p.
5944
.
21.
Hasan
,
A. M. A.
, and
Abdel-Raouf
,
M. E.
,
2018
, “
Applications of Guar Gum and Its Derivatives in Petroleum Industry: A Review
,”
Egypt. J. Pet.
,
27
(
4
), pp.
1043
1050
.
22.
Mothé
,
C. G.
,
Correia
,
D. Z.
,
De França
,
F. P.
, and
Riga
,
A. T.
,
2006
, “
Thermal and Rheological Study of Polysaccharides for Enhanced Oil Recovery
,”
J. Therm. Anal. Calorim.
,
85
(
1
), pp.
31
36
.
23.
El-hoshoudy
,
A. N.
,
Zaki
,
E. G.
, and
Elsaeed
,
S. M.
,
2020
, “
Experimental and Monte Carlo Simulation of Palmitate-Guar Gum Derivative as a Novel Flooding Agent in the Underground Reservoir
,”
J. Mol. Liq.
,
302
, p.
112502
.
24.
Alquraishi
,
A. A.
, and
Alsewailem
,
F. D.
,
2012
, “
Xanthan and Guar Polymer Solutions for Water Shut off in High Salinity Reservoirs
,”
Carbohydr. Polym.
,
88
(
3
), pp.
859
863
.
25.
Bera
,
A.
,
Shah
,
S.
,
Shah
,
M.
,
Agarwal
,
J.
, and
Vij
,
R. K.
,
2020
, “
Mechanistic Study on Silica Nanoparticles-Assisted Guar Gum Polymer Flooding for Enhanced Oil Recovery in Sandstone Reservoirs
,”
Colloids Surfaces A. Physicochem. Eng. Asp.
,
598
, p.
124833
.
26.
Chatterji
,
J.
, and
Borchardt
,
J. K.
,
1981
, “
Applications of Water-Soluble Polymers in the Oil Field
,”
J. Pet. Technol.
,
33
(
11
), pp.
2042
2056
.
27.
Mudgil
,
D.
,
Barak
,
S.
, and
Khatkar
,
B. S.
,
2014
, “
Guar Gum: Processing, Properties and Food Applications—A Review
,”
J. Food Sci. Technol.
,
51
(
3
), pp.
409
418
.
28.
Martín-Alfonso
,
J. E.
,
Cuadri
,
A. A.
,
Berta
,
M.
, and
Stading
,
M.
,
2017
, “
Relation Between Concentration and Shear-Extensional Rheology Properties of Xanthan and Guar Gum Solutions
,”
Carbohydr. Polym.
,
181
, pp.
63
70
.
29.
Xia
,
S.
,
Zhang
,
L.
,
Davletshin
,
A.
,
Li
,
Z.
,
You
,
J.
, and
Tan
,
S.
,
2020
, “
Application of Polysaccharide Biopolymer in Petroleum Recovery
,”
Polymers (Basel)
,
12
(
9
), p.
1860
.
30.
Davison
,
P.
, and
Mentzer
,
E.
,
1982
, “
Polymer Flooding in North Sea Reservoirs
,”
Soc. Pet. Eng. J.
,
22
(
03
), pp.
353
362
.
31.
Musa
,
T. A.
,
Ibrahim
,
A. F.
,
Nasr-El-Din
,
H. A.
, and
Hassan
,
A. M.
,
2021
, “
New Insights Into Guar Gum as Environmentally Friendly Polymer for Enhanced Oil Recovery in High-Salinity and High-Temperature Sandstone Reservoirs
,”
J. Pet. Explor. Prod.
,
11
(
4
), pp.
1905
1913
.
32.
Rellegadla
,
S.
,
Jain
,
S.
,
Sangwai
,
J. S.
,
Lavania
,
M.
,
Lal
,
B.
,
Gieg
,
L.
,
Rajasekar
,
A.
,
Bera
,
A.
, and
Agrawal
,
A.
,
2021
, “
Wettability Alteration of the Oil-Wet Carbonate by Viscosity-Augmented Guar Galactomannan for Enhanced Oil Recovery
,”
ACS Appl. Polym. Mater.
,
3
(
4
), pp.
1983
1994
.
33.
Rueda
,
E. J.
, and
Moreno
,
R.
,
2019
, “
Polymer Concentration, Brine Salinity, and Temperature Effects on Xanthan Gum Solutions Rheology—A Complementary and Check-Up Study
,”
Proceedings of the 25th ABCM International Congress of Mechanical Engineering
,
Uberlandia, MG, Brazil
,
Oct. 20–25
,
Paper No. COB-2019-2215.
34.
Freire Filho
,
M.E.N.
,
2021
,
“Injection of Xanthan Gum and Galactomannans Through Carbonate Rocks Evaluated by Core Flooding,” Master Thesis, University of Campinas, School of Mechanical Engineering, Campinas, SP, Brazil
.
35.
Zampieri
,
M. F.
, and
Moreno
,
R.B.Z. L.
,
2013
, “
Water Injection, Polymer Injection and Polymer Alternating Water Injection for Enhanced Oil Recovery—A Laboratory Study
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE
,
Nantes, France
,
June 9–14
,
ASME Paper No. OMAE2013-10243, p. V006T11A004.
36.
Lopes
,
L. F.
,
2017
,
“Recuperação de Petróleo Por Injeção de Solução Polimérica Em Rochas Carbonáticas Com Monitoramento Da Frente de Saturação,” PhD Thesis, University of Campinas, School of Mechanical Engineering, Campinas, SP, Brazil
.
37.
Hadia
,
N.
,
Chaudhari
,
L.
,
Mitra
,
S. K.
,
Vinjamur
,
M.
, and
Singh
,
R.
,
2007
, “
Experimental Investigation of Use of Horizontal Wells in Waterflooding
,”
J. Pet. Sci. Eng.
,
56
(
4
), pp.
303
310
.
38.
Doorwar
,
S.
, and
Mohanty
,
K. K.
,
2014
, “
Polymer Flood of Viscous Oils in Complex Carbonates
,”
SPE—DOE Improved Oil Recovery Symposium Proceedings, Society of Petroleum Engineers
,
Tulsa, OK
,
Apr. 12
,
pp. 1784–1797. SPE Paper No: SPE-169162-MS.
39.
API RP 63
,
1990
, “
Recommended Practices for Evaluation of Polymers Used in Enhanced Oil Recovery
”.
40.
Sheng
,
J. J.
,
2011
,
Modern Chemical Enhanced Oil Recovery
,
Gulf Professional Publishing
,
Burlington, MA
.
41.
API RP 40
,
1998
, “
Recommended Practices For Core Analysis
”.
42.
dos Santos
,
R. L. A.
,
Bedrikovetsky
,
P.
, and
Holleben
,
C. R.
,
1997
, “
Optimal Design and Planning for Laboratory Corefloods
,”
Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference
,
Rio de Janeiro, Brazil
,
Society of Petroleum Engineers
, SPE-39038-MS.
43.
Cannella
,
W. J.
,
Huh
,
C.
, and
Seright
,
R. S.
,
1988
, “
Prediction of Xanthan Rheology in Porous Media
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Society of Petroleum Engineers
, SPE-18089-MS.
44.
Lake
,
L. W.
,
1989
,
Enhanced Oil Recovery
,
Prentice Hall
,
Englewood Cliffs, NJ
.
45.
Saboorian-Jooybari
,
H.
,
Dejam
,
M.
, and
Chen
,
Z.
,
2016
, “
Heavy Oil Polymer Flooding From Laboratory Core Floods to Pilot Tests and Field Applications: Half-Century Studies
,”
J. Pet. Sci. Eng.
,
142
, pp.
85
100
.
46.
Samanta
,
A.
,
Ojha
,
K.
, and
Mandal
,
A.
,
2011
, “
The Characterization of Natural Surfactant and Polymer and Their Use in Enhanced Recovery of Oil
,”
Pet. Sci. Technol.
,
29
(
7
), pp.
765
777
.
47.
Hussain
,
M.
,
Bakalis
,
S.
,
Gouseti
,
O.
,
Zahoor
,
T.
,
Anjum
,
F. M.
, and
Shahid
,
M.
,
2015
, “
Dynamic and Shear Stress Rheological Properties of Guar Galactomannans and Its Hydrolyzed Derivatives
,”
Int. J. Biol. Macromol.
,
72
, pp.
687
691
.
48.
Ghoumrassi-Barr
,
S.
, and
Aliouche
,
D.
,
2016
, “
A Rheological Study of Xanthan Polymer for Enhanced Oil Recovery
,”
J. Macromol. Sci. Part B
,
55
(
8
), pp.
793
809
.
49.
Launay
,
B.
,
Cuvelier
,
G.
, and
Martinez-Reyes
,
S.
,
1997
, “
Viscosity of Locust Bean, Guar and Xanthan Gum Solutions in the Newtonian Domain: A Critical Examination of the Log (Ηsp)o-Log C[η]o Master Curves
,”
Carbohydr. Polym.
,
34
(
4
), pp.
385
395
.
50.
Reinoso
,
D.
,
Martín-Alfonso
,
M. J.
,
Luckham
,
P. F.
, and
Martínez-Boza
,
F. J.
,
2020
, “
Flow Behavior and Thermal Resistance of Xanthan Gum in Formate Brine
,”
J. Pet. Sci. Eng.
,
188
, p.
106881
.
51.
Koh
,
H.
,
Lee
,
V. B.
, and
Pope
,
G. A.
,
2018
, “
Experimental Investigation of the Effect of Polymers on Residual Oil Saturation
,”
SPE J.
,
23
(
1
), pp.
1
17
.
52.
Zhong
,
H.
,
Li
,
Y.
,
Zhang
,
W.
, and
Li
,
D.
,
2019
, “
Study on Microscopic Flow Mechanism of Polymer Flooding
,”
Arab. J. Geosci.
,
12
(
2
), pp.
1
10
.
53.
Yang
,
W.
,
Fu
,
C.
,
Du
,
Y.
,
Xu
,
K.
,
Balhoff
,
M. T.
,
Weston
,
J.
, and
Lu
,
J.
,
2021
, “
Dynamic Contact Angle Reformulates Pore-Scale Fluid-Fluid Displacement at Ultralow Interfacial Tension
,”
SPE J.
,
26
(
03
), pp.
1278
1289
.
54.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
55.
Ibrahim
,
A. F.
, and
Nasr-El-Din
,
H. A.
,
2020
, “
Stability Improvement of Carbon Dioxide Foam Using Nanoparticles and Viscoelastic Surfactants for Enhanced-Oil-Recovery Applications
,”
SPE Reserv. Eval. Eng.
,
23
(
02
), pp.
414
430
.
56.
Lai
,
N.
,
Wen
,
Y.
,
Yang
,
Z.
,
Chen
,
J.
,
Zhao
,
X.
,
Wang
,
D.
,
He
,
W.
, and
Chen
,
Y.
,
2020
, “
Polymer Flooding in High-Temperature and High-Salinity Heterogeneous Reservoir by Using Diutan Gum
,”
J. Pet. Sci. Eng.
,
188
, p.
106902
.
You do not currently have access to this content.