Abstract

Accurate modeling of the reaction rate of char particles is decisive for precise computational fluid dynamics simulations of gasifiers. Pore diffusion limits the reaction rate at medium temperatures and strongly depends on the pore size. In most of the present research, pore diffusion is either completely neglected or modeled with a single mean pore size. This work introduces a particle model with two pore sizes. Large pores transport the reactant gases into the particle and distribute them to small pores, in which the heterogeneous reactions take place. This approach is compared with a simpler model with a single mean pore size. The particle and the small pores are discretized by an appropriate number of elements, which allows an exact numerical calculation of the concentration profile for nth-order reactions. Both models are implemented into a two-dimensional computational fluid dynamics simulation of a lab-scale fixed bed gasifier. Simulations and experiments are carried out for 1.362 mm, 0.815 mm, and 0.458 mm sized particles, which are gasified with carbon dioxide and steam at 1200 °C and 1.1 bar total pressure. The reactant gases can penetrate smaller particles more easily. However, the measured product gas flow is independent of the particle size although the reactions take place under pore diffusion limitation. Only the proposed model with two pore sizes is able to reproduce the experiments adequately. However, it causes a significant extra computational effort.

References

1.
Higman
,
C.
,
2017
, “
GSTC Syngas Database: 2017 Update
,”
Gasification & Syngas Technologies Conference
,
Colorado Springs, CO
,
Oct. 17
.
2.
Spliethoff
,
H.
,
2010
,
Power Generation From Solid Fuels
,
Springer
,
Berlin/Heidelberg
.
3.
Higman
,
C.
, and
der Burgt
,
M. V.
,
2008
,
Gasification
, 2nd ed.,
Elsevier
,
Amsterdam
.
4.
Laurendeau
,
N. M.
,
1978
, “
Heterogeneous Kinetics of Coal Char Gasification and Combustion
,”
Prog. Energy Combust. Sci.
,
4
(
4
), pp.
221
270
.
5.
Jakubith
,
M.
,
1998
,
Grundoperationen und chemische Reaktionstechnik
,
Wiley-VCH
,
Weinheim
.
6.
Smith
,
K. L.
,
Smoot
,
L. D.
,
Fletcher
,
T. H.
, and
Pugmire
,
R. J.
,
1994
,
The Structure and Reaction Processes of Coal
,
Plenum Press
,
New York
.
7.
White
,
W. E.
,
Bartholomew
,
C. H.
,
Hecker
,
W. C.
, and
Smith
,
D. M.
,
1990
, “
Changes in Surface Area, Pore Structure and Density During Formation of High-Temperature Chars From Representative U.S. Coals
,”
Adsorpt. Sci. Technol.
,
7
(
4
), pp.
180
209
.
8.
Gadiou
,
R.
,
Bouzidi
,
Y.
, and
Prado
,
G.
,
2002
, “
The Devolatilization of Millimetre Sized Coal Particles at High Heating Rate: The Influence of Pressure on the Structure and Reactivity of the Char
,”
Fuel
,
81
(
16
), pp.
2121
2130
.
9.
Kleinhans
,
U.
,
Halama
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Char Particle Burning Behavior: Experimental Investigation of Char Structure Evolution During Pulverized Fuel Conversion
,”
Fuel Process. Technol.
,
171
, pp.
361
373
.
10.
DeYoung
,
S.
,
2019
, “
Numerical Simulation of Entrained Flow Gasification With Focus on Char Reaction Kinetics
,”
Ph.D. dissertation
,
Lehrstuhl für Energiesysteme, Technische Universität München
,
München
.
11.
Halama
,
S.
, and
Spliethoff
,
H.
,
2015
, “
Numerical Simulation of Entrained Flow Gasification: Reaction Kinetics and Char Structure Evolution
,”
Fuel Process. Technol.
,
138
, pp.
314
324
.
12.
Schwarz
,
R.
,
DeYoung
,
S.
, and
Spliethoff
,
H.
,
2021
, “
Numerical Simulation of Gasification With a One-Dimensional Submodel for Char Structure Evolution
,”
Fuel
,
293
, p.
120492
.
13.
Roberts
,
D. G.
,
2000
, “
Intrinsic Reaction Kinetics of Coal Chars With Oxygen, Carbon Dioxide and Steam at Elevated Pressures
,”
Ph.D. dissertation
,
Department of Chemical Engineering, University of Newcastle
,
Newcastle
.
14.
Sircar
,
I.
,
Sane
,
A.
,
Wang
,
W.
, and
Gore
,
J. P.
,
2014
, “
A Study of High Pressure Pinewood Char Gasification With CO2
,”
Fuel
,
134
, pp.
554
564
.
15.
Shin
,
S.-M.
, and
Jung
,
S.-M.
,
2015
, “
Gasification Effect of Metallurgical Coke With CO2 and H2O on the Porosity and Macrostrength in the Temperature Range of 1100–1500 °C
,”
Energy Fuels
,
29
(
10
), pp.
6849
6857
.
16.
Beckmann
,
M.
,
Bibrzycki
,
J.
,
Mancini
,
M.
,
Szlęk
,
A.
, and
Weber
,
R.
,
2017
, “
Mathematical Modeling of Reactants’ Transport and Chemistry During Oxidation of a Millimeter-Sized Coal-Char Particle in a Hot Air Stream
,”
Combust. Flame
,
180
, pp.
2
9
.
17.
Mitchell
,
R. E.
,
Ma
,
L.
, and
Kim
,
B.
,
2007
, “
On the Burning Behavior of Pulverized Coal Chars
,”
Combust. Flame
,
151
(
3
), pp.
426
436
.
18.
Kassebaum
,
J.
, and
Chelliah
,
H.
,
2009
, “
Oxidation of Isolated Porous Carbon Particles: Comprehensive Numerical Model
,”
Combust. Theory Modell.
,
13
(
1
), pp.
143
166
.
19.
Singer
,
S. L.
, and
Ghoniem
,
A. F.
,
2013
, “
Comprehensive Gasification Modeling of Char Particles With Multi-Modal Pore Structures
,”
Combust. Flame
,
160
(
1
), pp.
120
137
.
20.
Masmoudi
,
M. A.
,
Sahraoui
,
M.
,
Griouli
,
N.
, and
Halouani
,
K.
,
2014
, “
2-D Modeling of Thermo-Kinetics Coupled With Heat and Mass Transfer in the Reduction Zone of a Fixed Bed Downdraft Biomass Gasifier
,”
Renewable Energy
,
66
, pp.
288
298
.
21.
Ryan
,
J. S.
, and
Hallett
,
W. L. H.
,
2002
, “
Packed Bed Combustion of Char Particles: Experiments and an Ash Model
,”
Chem. Eng. Sci.
,
57
(
18
), pp.
3873
3882
.
22.
Peters
,
B.
,
2002
, “
Measurements and Application of a Discrete Particle Model (DPM) to Simulate Combustion of a Packed Bed of Individual Fuel Particles
,”
Combust. Flame
,
131
(
1–2
), pp.
132
146
.
23.
Ranzi
,
E.
,
Corbetta
,
M.
,
Manenti
,
F.
, and
Pierucci
,
S.
,
2014
, “
Kinetic Modeling of the Thermal Degradation and Combustion of Biomass
,”
Chem. Eng. Sci.
,
110
, pp.
2
12
.
24.
Wurzenberger
,
J. C.
,
Wallner
,
S.
,
Raupenstrauch
,
H.
, and
Khinast
,
J. G.
,
2002
, “
Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling
,”
Am. Inst. Chem. Eng. J.
,
48
(
10
), pp.
2398
2411
.
25.
Mahmoudi
,
A. H.
,
Markovic
,
M.
,
Peters
,
B.
, and
Brem
,
G.
,
2015
, “
An Experimental and Numerical Study of Wood Combustion in a Fixed Bed Using Euler–Lagrange Approach (XDEM)
,”
Fuel
,
150
, pp.
573
582
.
26.
Chejne
,
F.
,
Hernandez
,
J. P.
,
Florez
,
W. F.
, and
Hill
,
A. F. J.
,
2000
, “
Modelling and Simulation of Time-Dependent Coal Combustion Processes in Stacks
,”
Fuel
,
79
(
8
), pp.
987
997
.
27.
Mahmoudi
,
A. H.
,
Besseron
,
X.
,
Hoffmann
,
F.
,
Markovic
,
M.
, and
Peters
,
B.
,
2016
, “
Modeling of the Biomass Combustion on a Forward Acting Grate Using XDEM
,”
Chem. Eng. Sci.
,
142
, pp.
32
41
.
28.
Bruch
,
C.
,
Peters
,
B.
, and
Nussbaumer
,
T.
,
2003
, “
Modelling Wood Combustion Under Fixed Bed Conditions
,”
Fuel
,
82
(
6
), pp.
729
738
.
29.
Mahapatra
,
S.
,
Kumar
,
S.
, and
Dasappa
,
S.
,
2016
, “
Gasification of Wood Particles in a Co-Current Packed Bed: Experiments and Model Analysis
,”
Fuel Process. Technol.
,
145
(
9
), pp.
76
89
.
30.
Dasappa
,
S.
, and
Paul
,
P. J.
,
2001
, “
Gasification of Char Particles in Packed Beds: Analysis and Results
,”
Int. J. Energy Res.
,
25
(
12
), pp.
1053
1072
.
31.
Collazo
,
J.
,
Porteiro
,
J.
,
Patiño
,
D.
, and
Granada
,
E.
,
2012
, “
Numerical Modeling of the Combustion of Densified Wood Under Fixed-Bed Conditions
,”
Fuel
,
93
(
1
), pp.
149
159
.
32.
Tinaut
,
F. V.
,
Melgar
,
A.
,
Pérez
,
J. F.
, and
Horrillo
,
A.
,
2008
, “
Effect of Biomass Particle Size and Air Superficial Velocity on the Gasification Process in a Downdraft Fixed Bed Gasifier. An Experimental and Modelling Study
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1076
1089
.
33.
Gonzalez
,
W. A.
,
Perez
,
J. F.
,
Chapela
,
S.
, and
Porteiro
,
J.
,
2018
, “
Numerical Analysis of Wood Biomass Packing Factor in a Fixed-Bed Gasification Process
,”
Renewable Energy
,
121
, pp.
579
589
.
34.
Zhai
,
M.
,
Zhang
,
Y.
,
Dong
,
P.
, and
Liu
,
P.
,
2015
, “
Characteristics of Rice Husk Char Gasification With Steam
,”
Fuel
,
158
, pp.
42
49
.
35.
Murgia
,
S.
,
Vascellari
,
M.
, and
Cau
,
G.
,
2012
, “
Comprehensive CFD Model of an Air-Blown Coal-Fired Updraft Gasifier
,”
Fuel
,
101
, pp.
129
138
.
36.
Mehrabian
,
R.
,
Shiehnejadhesar
,
A.
,
Scharler
,
R.
, and
Obernberger
,
I.
,
2014
, “
Multi-Physics Modelling of Packed Bed Biomass Combustion
,”
Fuel
,
122
, pp.
164
178
.
37.
Diedhiou
,
A.
,
Bensakhria
,
A.
,
Ndiaye
,
L.-G.
,
Khelfa
,
A.
, and
Sock
,
O.
,
2014
, “
Study of Cashew Nut Shells Valorisation by Gasification
,”
Chem. Eng. Trans.
,
39
, pp.
1171
1176
.
38.
Qin
,
Y.
,
Zhao
,
Z.
,
Wiltowski
,
T.
,
aloqaili
,
M.
, and
Liang
,
Y.
,
2016
, “
Investigation of Co-Gasification Reactivity of Torrefied Jatropha Seed Cake With Illinois #6 Coal Char
,”
BioResources
,
11
(
3
), pp.
7624
7636
.
39.
Sawettaporn
,
S.
,
Bunyakiat
,
K.
, and
Kitiyanan
,
B.
,
2009
, “
CO2 Gasification of Thai Coal Chars: Kinetics and Reactivity Studies
,”
Korean J. Chem. Eng.
,
26
(
4
), pp.
1009
1015
.
40.
Sircar
,
I.
,
Sane
,
A.
,
Wang
,
W.
, and
Gore
,
J. P.
,
2014
, “
Experimental and Modeling Study of Pinewood Char Gasification With CO2
,”
Fuel
,
119
, pp.
38
46
.
41.
Wu
,
S.
,
Gu
,
J.
,
Li
,
L.
,
Wu
,
Y.
, and
Gao
,
J.
,
2006
, “
The Reactivity and Kinetics of Yanzhou Coal Chars From Elevated Pyrolysis Temperatures During Gasification in Steam at 900–1200 °C
,”
Process Saf. Environ. Prot.
,
84
(
6
), pp.
420
428
.
42.
Buczyński
,
R.
,
Weber
,
R.
,
Szlek
,
A.
, and
Nosek
,
R.
,
2012
, “
Time-Dependent Combustion of Solid Fuels in a Fixed-Bed: Measurements and Mathematical Modeling
,”
Energy Fuels
,
26
(
8
), pp.
4767
4774
.
43.
Sadhwani
,
N.
,
Adhikari
,
S.
,
Eden
,
M. R.
,
Wang
,
Z.
, and
Baker
,
R.
,
2016
, “
Southern Pines Char Gasification With CO2—Kinetics and Effect of Alkali and Alkaline Earth Metals
,”
Fuel Process. Technol.
,
150
, pp.
64
70
.
44.
Seo
,
D. K.
,
Lee
,
S. K.
,
Kang
,
M. W.
,
Hwang
,
J.
, and
Yu
,
T.-U.
,
2010
, “
Gasification Reactivity of Biomass Chars With CO2
,”
Biomass Bioenergy
,
34
(
12
), pp.
1946
1953
.
45.
Ahmed
,
I. I.
, and
Gupta
,
A. K.
,
2011
, “
Kinetics of Woodchips Char Gasification With Steam and Carbon Dioxide
,”
Appl. Energy
,
88
(
5
), pp.
1613
1619
.
46.
Bhatia
,
S. K.
, and
Perlmutter
,
D. D.
,
1980
, “
A Random Pore Model for Fluid–Solid Reactions: I. Isothermal, Kinetic Control
,”
AIChE J.
,
26
(
3
), pp.
379
385
.
47.
Gavalas
,
G. R.
,
1980
, “
A Random Capillary Model With Application to Char Gasification at Chemically Controlled Rates
,”
Am. Inst. Chem. Eng. J.
,
26
(
4
), pp.
577
585
.
48.
Simons
,
G.
,
1982
, “
The Pore Tree Structrure of Porous Char
,”
Nineteenth Symposium (International) on Combustion
,
Haifa, Israel
,
Aug. 8–13
, pp.
1067
1076
.
49.
Jones
,
W. P.
, and
Lindstedt
,
R. P.
,
1988
, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame
,
73
(
3
), pp.
233
249
.
50.
Netter
,
T.
,
Geißler
,
A.
, and
Spliethoff
,
H.
,
2020
, “
Determination of the Intrinsic Gasification Kinetics of a Bituminous Coal Including Product Gas Inhibition and Char Deactivation Under Entrained Flow Conditions
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070913
.
51.
Ansys Inc.
,
2019
,
Ansys Fluent User's Guide. 2019 R1
,
Ansys Inc.
,
Canonsburg, PA
.
52.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
53.
Buttler
,
A.
,
DeYoung
,
S.
,
Geißler
,
A.
,
Hanel
,
A.
,
Kerscher
,
F.
,
Meysel
,
P.
,
Miehling
,
S.
,
Netter
,
T.
,
Schwarz
,
R.
, and
Steibel
,
M.
,
2020
,
Verbundvorhaben HotVeGas III—FLEX: Abschlussbericht
,
Lehrstuhl für Energiesysteme, Technische Universität München
,
Garching
.
54.
Gräbner
,
M.
, and
Lester
,
E.
,
2016
, “
Proximate and Ultimate Analysis Correction for Kaolinite-Rich Chinese Coals Using Mineral Liberation Analysis
,”
Fuel
,
186
, pp.
190
198
.
55.
Bhatia
,
S. K.
, and
Perlmutter
,
D. D.
,
1981
, “
A Random Pore Model for Fluid–Solid Reactions: II. Diffusion and Transport Effects
,”
AlChE J.
,
27
(
2
), pp.
247
254
.
56.
Ma
,
L.
,
2006
, “
Combustion and Gasification of Chars in Oxygen and Carbon Dioxide at Elevated Pressure
,”
Ph.D. dissertation
,
Stanford University
,
Stanford
, CA.
57.
Tremel
,
A.
,
2012
, “
Reaction Kinetics of Solid Fuels During Entrained Flow Gasification
,”
Ph.D. dissertation
,
Lehrstuhl für Energiesysteme, Technische Universität München
,
München
.
58.
Gunn
,
D. J.
,
1977
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
59.
Thiele
,
E. W.
,
1939
, “
Relation Between Catalytic Activity and Size of Particle
,”
Ind. Eng. Chem.
,
31
(
7
), pp.
916
920
.
60.
Feng
,
B.
,
Jensen
,
A.
,
Bhatia
,
S. K.
, and
Dam-Johansen
,
K.
,
2003
, “
Activation Energy Distribution of Thermal Annealing of a Bituminous Coal
,”
Energy Fuels
,
17
(
2
), pp.
399
404
.
You do not currently have access to this content.