Abstract

Increasingly stricter emission regulations and fleet CO2 targets drive the engine development toward clean combustion and high efficiency. To achieve this goal, planning and conducting experiments in a time- and cost-effective way play a vital role in finding the optimal combinations of all selectable parameters. This study investigated the effects of five engine parameters on two engine-out responses in a camless variable valve actuation (VVA) heavy-duty engine. Five engine parameters were intake valve lift (IVL), inlet valve closing (IVC), injection pressure, start of injection (SOI), and exhaust gas recirculation (EGR). Initially, a design of experiment (DoE) model was generated to predict both engine-out responses: brake-specific fuel consumption (BSFC) and BSNOx emissions. Due to a poor fit of the BSFC regression model from DoE analysis, an artificial neural network (ANN) model was developed to predict BSFC instead. A d-optimal design with five engine parameters at five levels was used to design the experiment. Extra test points together with d-optimal design points were utilized to train the ANN model. The well-trained ANN model for BSFC and DoE model for BSNOx were combined with a genetic algorithm (GA) to generate the Pareto-optimal front. The results proved the concept of using a hybrid statistical approach (DoE + ANN) with GA as an effective tool to generate a range of compromise design solutions. By extracting designs along the Pareto-optimal front, the impact of engine parameters on the system can be explained.

References

1.
Montgometry
,
D. C.
,
2012
,
Design and Analysis of Experiments
, 8th ed,
Wiley
,
Singapore
.
2.
Montgometry
,
D. C.
,
2008
, “
Applications of Design of Experiments in Engineering
,”
Qual. Reliab. Eng. Int.
,
24
(
5
), pp.
501
502
.
3.
Ryan
,
T. P.
,
2007
,
Modern Experimental Design
,
Wiley
,
Chichester
.
4.
Perez
,
P. L.
, and
Boehman
,
A. L.
,
2009
, “
Experimental Study of Oxygen-Enriched Diesel Combustion Using Simulated Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
131
(
4
), p.
042802
.
5.
Sjoblom
,
J.
, and
Andric
,
J.
,
2018
, “
Intrinsic Design of Experiments for Modelling of Internal Combustion Engines
,”
SAE
Technical Paper 2018-01-1156.
6.
McTaggart-Cowan
,
G. P.
,
Cong
,
S.
,
Garner
,
C. P.
,
Wahab
,
E.
, and
Peckham
,
M.
,
2012
, “
Experimental Study of Low Temperature Diesel Combustion Sensitivity to Engine Operating Parameters
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082805
.
7.
Tang
,
M.
,
Pei
,
Y.
,
Guo
,
H.
,
Zhang
,
Y.
,
Torelli
,
R.
,
Probst
,
D.
,
Fütterer
,
C.
, and
Traver
,
M.
,
2021
, “
Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062309
.
8.
Parlak
,
A.
,
Islamoglu
,
Y.
,
Yasar
,
H.
, and
Egrisogut
,
A.
,
2006
, “
Application of Artificial Neural Network to Predict Specific Fuel Consumption and Exhaust Temperature for a Diesel Engine
,”
Appl. Therm. Eng.
,
26
(
8–9
), pp.
824
828
.
9.
Solmaz
,
O.
,
Gurbuz
,
H.
, and
Karacor
,
M.
,
2020
, “
Comparison of Artificial Neural Network and Fuzzy Logic Approaches for the Prediction of In-Cylinder Pressure in a Spark Ignition Engine
,”
ASME J. Dyn. Syst. Meas. Contr.
,
142
(
9
), p.
091005
.
10.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
.
11.
Togun
,
N. K.
, and
Baysec
,
S.
,
2010
, “
Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks
,”
Appl. Energy
,
87
(
1
), pp.
349
355
.
12.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
ANN Prediction of Diesel Engine Performance and Emission Fuelled With Diesel-Kerosene-Ethanol Blends: A Fuzzy Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
13.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Cambridge, MA
.
14.
Coello
,
C. A.
, and
Christiansen
,
A. D.
,
2000
, “
Multi-objective Optimization of Trusses Using Genetic Algorithms
,”
Comput. Struct.
,
75
(
6
), pp.
647
660
.
15.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multi-objective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
16.
Atashkari
,
K.
,
Narima-Zadeh
,
N.
,
Golcu
,
M.
,
Khalkhali
,
A.
, and
Jamali
,
A.
,
2007
, “
Modelling and Multi-Objective Optimization of a Variable Valve-Timing Spark-Ignition Engine Using Polynomial Neural Networks and Evolutionary Algorithms
,”
Energy Convers. Manage.
,
48
(
3
), pp.
1029
1041
.
17.
Kesgin
,
U.
,
2004
, “
Genetic Algorithm and Artificial Neural Network for Engine Optimization of Efficiency and NOx Emission
,”
Fuel
,
83
(
7–8
), pp.
885
895
.
18.
Alonso
,
J. M.
,
Alvarruiz
,
F.
,
Desantes
,
J. M.
,
Hernandez
,
L.
,
Hernandez
,
V.
, and
Molto
,
G.
,
2007
, “
Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions
,”
IEEE Trans. Evol. Comput.
,
11
(
1
), pp.
46
55
.
19.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NAGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
20.
d’Ambrosio
,
S.
, and
Ferrari
,
A.
,
2015
, “
Potential of Multiple Injection Strategies Implementing the After Shot and Optimized with the Design of Experiments Procedure to Improve Diesel Engine Emissions and Performance
,”
Appl. Energy
,
155
, pp.
933
946
.
21.
Saccullo
,
M.
,
Benham
,
T.
, and
Ingemar
,
D.
, “
CI Methanol and Ethanol Combustion Using Ignition Improver
,” SAE Technical Paper 2019-01-2232.
22.
Tiwari
,
P. K.
,
Lodhekar
,
A. G.
, and
Kongre
,
S. C.
,
2019
, “Comparison of RSM, ANN, Factorial DoE, and Fuzzy Logic Network for Diesel Engine Performance Parameter and Emission Analysis,”
Mechanical Engineering for Sustainable Development
,
C. S. P.
Rao
,
G.
Amba Prasa Rao
,
N.
Selvaraj
,
P. S. C.
Bose
, and
V. P.
Chandramohan
, eds., 1st ed.,
Applied Academic Press
,
New York
.
23.
Karazi
,
S. M.
,
Issa
,
A.
, and
Brabazon
,
D.
,
2009
, “
Comparison of ANN and DoE for the Prediction of Laser-Machined Micro-Channel Dimensions
,”
Opt. Lasers Eng.
,
47
(
9
), pp.
956
964
.
24.
Mauro
,
A. D.
,
Chen
,
H.
, and
Sick
,
V.
,
2019
, “
Neural Network Prediction of Cycle-to-Cycle Power Variability in a Spark-Ignited Internal Combustion Engine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4937
4944
.
25.
Park
,
S.
,
Cho
,
J.
,
Park
,
J.
, and
Song
,
S.
,
2019
, “
Numerical Study of the Performance and NOx Emission of a Diesel-Methanol Dual-Fuel Engine Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation
,”
Energies
,
12
(
4223
), pp.
1
26
.
26.
Yoo
,
H.
,
Park
,
B. Y.
,
Cho
,
H.
, and
Park
,
J.
,
2019
, “
Performance Optimization of a Diesel Engine With a Two-Stage Turbocharging System and Dual-Loop EGR Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation
,”
Energies
,
12
(
22
), p.
4223
.
You do not currently have access to this content.