Abstract

The purpose of this study is to examine the reactivity controlled compression ignition (RCCI) engine combustion characteristics using jatropha oil blended with diesel as the high reactivity and n-amyl alcohol as the low reactivity fuel in various proportions by volume. Response surface methodology (RSM) is adopted to forecast the operating parameters such as fuel injection timing (FIT), fuel injection pressure (FIP), and engine load. This ideal model is used to obtain the maximum combustion pressure and reduce the emission of unburnt hydrocarbon (HC) and oxides of nitrogen (NOx) for different fuel blends. For an RCCI engine fueled with B20/1-pentanol fuel, the impact of various factors such as engine load, FIT, and FIP are analyzed based on an L20 orthogonal array. With the help of the results obtained from experiments, various models were developed and validated. The ideal engine parameters found out were 71% of engine load, FIP of 400 bar, and 27 °bTDC, and under this configuration, the maximum cylinder pressure is achieved. The ternary fuel develops higher maximum pressures of combustion than that of pure diesel at higher loading conditions, pressures of fuel injection, and advanced injection timings. At lower loading conditions, fuel injection pressures and ignition delay are noticed, whereas peak pressure decreases. Also, analysis of variance (ANOVA), a statistically valid test, is used to develop a regression model, and the test results indicate that the regression model is appropriate for the following R2 values obtained.

References

1.
Ngamcharussrivichai
,
C.
,
Totarat
,
P.
, and
Bunyakiat
,
K.
,
2008
, “
Ca and Zn Mixed Oxide as a Heterogeneous Base Catalyst for Transesterification of Palm Kernel Oil
,”
Appl. Catal., A
,
341
(
1–2
), pp.
77
85
.
2.
Meher
,
L. C.
,
Sagar
,
D. V.
, and
Naik
,
S. N.
,
2006
, “
Technical Aspects of Biodiesel Production by Transesterification—A Review
,”
Renewable Sustainable Energy Rev.
,
10
(
3
), pp.
248
268
.
3.
Ali
,
Y.
, and
Hanna
,
M. A.
,
1994
, “
Alternative Diesel Fuels From Vegetable Oils
,”
Bioresour. Technol.
,
50
(
2
), pp.
153
163
.
4.
Zullaikah
,
S.
,
Lai
,
C. C.
,
Vali
,
S. R.
, and
Ju
,
Y. H.
,
2005
, “
A Two-Step Acid-Catalyzed Process for the Production of Biodiesel From Rice Bran Oil
,”
Bioresour. Technol.
,
96
(
17
), pp.
1889
1896
.
5.
Thiruvengadaravi
,
K. V.
,
Nandagopal
,
J.
,
Bala
,
V. S. S.
,
Kirupha
,
S. D.
,
Vijayalakshmi
,
P.
, and
Sivanesan
,
S.
,
2009
, “
Kinetic Study of the Esterification of Free Fatty Acids in Non-Edible Pongamia Pinnata Oil Using Acid Catalyst
,”
Ind. J. Sci. Technol.
,
2
(
12
), pp.
20
24
.
6.
Meher
,
L. C.
,
Naik
,
S. N.
, and
Das
,
L. M.
,
2004
, Methanolysis of Pongamia pinnata (Karanja) Oil for Production of Biodiesel.
7.
Naik
,
M.
,
Meher
,
L. C.
,
Naik
,
S. N.
, and
Das
,
L. M.
,
2008
, “
Production of Biodiesel From High Free Fatty Acid Karanja (Pongamia Pinnata) Oil
,”
Biomass Bioenergy
,
32
(
4
), pp.
354
357
.
8.
Nwafor
,
O. M. I.
,
2004
, “
Emission Characteristics of Diesel Engine Operating on Rapeseed Methyl Ester
,”
Renewable Energy
,
29
(
1
), pp.
119
129
.
9.
Agarwal
,
A. K.
, and
Bajaj
,
T. P.
,
2009
, “
Process Optimisation of Base Catalysed Transesterification of Karanja Oil for Biodiesel Production
,”
Int. J. Oil Gas Coal Technol.
,
2
(
3
), pp.
297
310
.
10.
Baiju
,
B.
,
Naik
,
M. K.
, and
Das
,
L. M.
,
2009
, “
A Comparative Evaluation of Compression Ignition Engine Characteristics Using Methyl and Ethyl Esters of Karanja Oil
,”
Renewable Energy
,
34
(
6
), pp.
1616
1621
.
11.
Arzamendi
,
G.
,
Campo
,
I.
,
Arguinarena
,
E.
,
Sánchez
,
M.
,
Montes
,
M.
, and
Gandia
,
L. M.
,
2007
, “
Synthesis of Biodiesel With Heterogeneous NaOH/Alumina Catalysts: Comparison With Homogeneous NaOH
,”
Chem. Eng. J.
,
134
(
1–3
), pp.
123
130
.
12.
Lam
,
M. K.
,
Lee
,
K. T.
, and
Mohamed
,
A. R.
,
2010
, “
Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel: A Review
,”
Biotechnol. Adv.
,
28
(
4
), pp.
500
518
.
13.
Su
,
F.
, and
Guo
,
Y.
,
2014
, “
Advancements in Solid Acid Catalysts for Biodiesel Production
,”
Green Chem.
,
16
(
6
), pp.
2934
2957
.
14.
Sani
,
Y. M.
,
Daud
,
W. M. A. W.
, and
Aziz
,
A. A.
,
2014
, “
Activity of Solid Acid Catalysts for Biodiesel Production: A Critical Review
,”
Appl. Catal., A
,
470
, pp.
140
161
.
15.
Qi
,
D. H.
,
Chen
,
H.
,
Geng
,
L. M.
, and
Bian
,
Y. Z.
,
2010
, “
Experimental Studies on the Combustion Characteristics and Performance of a Direct Injection Engine Fueled With Biodiesel/Diesel Blends
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2985
2992
.
16.
Ozsezen
,
A. N.
,
Canakci
,
M.
,
Turkcan
,
A.
, and
Sayin
,
C.
,
2009
, “
Performance and Combustion Characteristics of a DI Diesel Engine Fueled With Waste Palm Oil and Canola Oil Methyl Esters
,”
Fuel
,
88
(
4
), pp.
629
636
.
17.
Sarath Babu
,
R. T.
,
Kannan
,
M.
, and
Lawrence
,
P.
,
2017
, “
Performance Analysis of Low Heat Rejection Diesel Engine, Using Mahua Oil Bio Fuel
,”
Int. J. Ambient Energy
,
38
(
8
), pp.
844
848
.
18.
Chauhan
,
B. S.
,
Kumar
,
N.
, and
Cho
,
H. M.
,
2012
, “
A Study on the Performance and Emission of a Diesel Engine Fueled With Jatropha Biodiesel Oil and Its Blends
,”
Energy
,
37
(
1
), pp.
616
622
.
19.
Satake
,
K. O. J. I.
,
Monaka
,
T. O. S. H. I. A. K. I.
,
Yamada
,
S. A. T. O. S. H. I.
,
Endo
,
H. I. R. O. Y. U. K. I.
,
Yanagisawa
,
M. I. T. S. U. H. I. K. O.
, and
Abe
,
T. A. K. A. H. A. R. U.
,
2008
, “
The Rapid Development of Diesel Engines Using an Optimization of the Fuel Injection Control
,”
Mitsubishi Heavy Ind. Ltd. Tech. Rev.
,
45
(
3
), pp.
1
5
.
20.
Shroff
,
H. D.
, and
Hodgetts
,
D.
,
1974
, “
Simulation and Optimization of Thermodynamic Processes of Diesel Engine
,”
SAE Trans.
,
83
, pp.
885
903
.
21.
Singh
,
T. S.
, and
Verma
,
T. N.
,
2019
, “
Taguchi Design Approach for Extraction of Methyl Ester From Waste Cooking Oil Using Synthesized CaO as Heterogeneous Catalyst: Response Surface Methodology Optimization
,”
Energy Convers. Manage.
,
182
, pp.
383
397
.
22.
Sharma
,
A.
,
Singh
,
Y.
,
Tyagi
,
A.
, and
Singh
,
N.
,
2020
, “
Sustainability of the Polanga Biodiesel Blends During the Application to the Diesel Engine Performance and Emission Parameters—Taguchi and RSM Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
1
), pp.
1
14
.
23.
Hwang
,
J.
,
Qi
,
D.
,
Jung
,
Y.
, and
Bae
,
C.
,
2014
, “
Effect of Injection Parameters on the Combustion and Emission Characteristics in a Common-Rail Direct Injection Diesel Engine Fueled With Waste Cooking Oil Biodiesel
,”
Renewable Energy
,
63
(
1
), pp.
9
17
.
24.
Jia
,
M.
,
Xie
,
M.
,
Wang
,
T.
, and
Peng
,
Z.
,
2011
, “
The Effect of Injection Timing and Intake Valve Close Timing on Performance and Emissions of Diesel PCCI Engine With a Full Engine Cycle CFD Simulation
,”
Appl. Energy
,
88
(
9
), pp.
2967
2975
.
25.
Wamankar
,
A. K.
,
Satapathy
,
A. K.
, and
Murugan
,
S.
,
2015
, “
Experimental Investigation of the Effect of Compression Ratio, Injection Timing and Pressure in a DI (direct injection) Diesel Engine Running on Carbon Black-Water-Diesel Emulsion
,”
Energy
,
93
, pp.
511
520
.
26.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2020
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p. 042301.
27.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
,
Panchal
,
H.
,
Elkelawy
,
M.
, and
Sadasivuni
,
K. K.
,
2020
, “
Optimization of Performance and Emission Characteristics of CI Engine Fueled With Jatropha Biodiesel Produced Using a Heterogeneous Catalyst (CaO)
,”
Fuel
,
280
, p.
118611
.
28.
Kapoor
,
M.
,
Kumar
,
N.
,
Verma
,
A. S.
,
Gautam
,
G.
, and
Padap
,
A. K.
,
2020
, “
Performance and Emission Analysis of Compression Ignition Engine With Neem Methyl Ester Mixed With Cerium Oxide (CeO2) Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082308
.
29.
Nutakki
,
P. K.
,
Gugulothu
,
S. K.
,
Ramachander
,
J.
, and
Sivasurya
,
M.
,
2022
, “
Effect of n-Amyl Alcohol/Biodiesel Blended Nano Additives on the Performance, Combustion and Emission Characteristics of CRDi Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
29
(
1
), pp.
82
97
.
30.
Jatoth
,
R.
,
Gugulothu
,
S. K.
,
Sastry
,
G. R. K.
, and
Surya
,
M. S.
,
2021
, “
Statistical and Experimental Investigation of the Influence of Fuel Injection Strategies on Gasoline/Diesel RCCI Combustion and Emission Characteristics in a Diesel Engine
,”
Int. J. Green Energy
,
18
(
12
), pp.
1229
1248
.
31.
Chandramouli
,
R.
,
Ravi Kiran Sastry
,
G.
,
Gugulothu
,
S. K.
, and
Srinivasa Rao
,
M. S. S.
,
2021
, “
Multi-Objective Optimization of Thermo-Ecological Criteria-Based Performance Parameters of Reheat and Regenerative Braysson Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072106
.
32.
Ramachander
,
J.
,
Gugulothu
,
S. K.
,
Sastry
,
G. R.
, and
Surya
,
M. S.
,
2021
, “
Statistical and Experimental Investigation of the Influence of Fuel Injection Strategies on CRDI Engine Assisted CNG Dual Fuel Diesel Engine
,”
Int. J. Hydrogen Energy
,
46
(
42
), pp.
22149
22164
.
33.
Jatoth
,
R.
,
Gugulothu
,
S. K.
, and
Kiran Sastry
,
G. R.
,
2021
, “
Experimental Study of Using Biodiesel and Low Cetane Alcohol as the Pilot Fuel on the Performance and Emission Trade-Off Study in the Diesel/Compressed Natural Gas Dual Fuel Combustion Mode
,”
Energy
,
225
, p.
120218
.
34.
Ramachander
,
J.
,
Gugulothu
,
S. K.
,
Sastry
,
G. R. K.
,
Panda
,
J. K.
, and
Surya
,
M. S.
,
2021
, “
Performance and Emission Predictions of a CRDI Engine Powered With Diesel Fuel: A Combined Study of Injection Parameters Variation and Box-Behnken Response Surface Methodology Based Optimization
,”
Fuel
,
290
, p.
120069
.
35.
Jatoth
,
R.
, and
Gugulothu
,
S. K.
,
2021
, “
Influence of Compressed Natural Gas Dual Fuel Operation With Biodiesel and Low Cetane Alcohol as Pilot Fuels on Performance and Emission Characteristics of a CRDI Engine: A Novel Trade-Off Investigation
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
63
(
3
), pp.
1
20
.
36.
Rajak
,
U.
,
Nashine
,
P.
,
Singh
,
T. S
, and
Verma
,
T. N.
,
2018
, “
Numerical Investigation of Performance, Combustion and Emission Characteristics of Various Biofuels
,”
Energy Convers. Manage.
,
156
, pp.
235
252
.
37.
Govinda Rao
,
B.
,
Datta Bharadwaz
,
Y.
,
Virajitha
,
C.
, and
Dharma Rao
,
V.
,
2018
, “
Effect of Injection Parameters on the Performance and Emission Characteristics of a Variable Compression Ratio Diesel Engine With Plastic Oil Blends–An Experimental Study
,”
Energy Environ.
,
29
(
4
), pp.
492
510
.
38.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
39.
Seelam
,
N.
,
Gugulothu
,
S. K.
,
Reddy
,
R. V.
, and
Burra
,
B.
,
2022
, “
Influence of Hexanol/Hydrogen Additives With Diesel Fuel From CRDI Diesel Engine With Exhaust Gas Recirculation Technique: A Special Focus on Performance, Combustion, Gaseous and Emission Species
,”
J. Clean. Prod.
,
340
(
2
), p.
130854
.
40.
Seelam
,
N.
,
Gugulothu
,
S. K.
,
Bhasker
,
B.
,
Mulugundum
,
S.
, and
Sastry
,
G. R.
,
2022
, “
Investigating the Role of Fuel Injection Pressure and Piston Bowl Geometries to Enhance Performance and Emission Characteristics of Hydrogen-Enriched Diesel/1-Pentanol Fueled in CRDI Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
51
(
1
), pp.
1
15
.
41.
Ramachander
,
J.
,
Gugulothu
,
S. K.
,
Sastry
,
G. R.
, and
Bhsker
,
B.
,
2022
, “
An Experimental Assessment on the Influence of High Fuel Injection Pressure With Ternary Fuel (Diesel–Mahua Methyl Ester–Pentanol) on Performance, Combustion, and Emission Characteristics of Common Rail Direct Injection Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
29
(
1
), pp.
119
132
.
42.
Hirkude
,
J. B.
, and
Padalkar
,
A. S.
,
2014
, “
Performance Optimization of CI Engine Fuelled With Waste Fried Oil Methyl Ester-Diesel Blend Using Response Surface Methodology
,”
Fuel
,
119
(
3
), pp.
266
273
.
43.
Yoon
,
S. H.
,
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2010
, “
Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042201
.
44.
Sayin
,
C.
,
Ozsezen
,
A. N.
, and
Canakci
,
M.
,
2010
, “
The Influence of Operating Parameters on the Performance and Emissions of a DI Diesel Engine Using Methanol-Blended-Diesel Fuel
,”
Fuel
,
89
(
7
), pp.
1407
1414
.
45.
Xie
,
W.
, and
Zhao
,
L.
,
2013
, “
Aminopropylsilica as an Environmentally Friendly and Reusable Catalyst for Biodiesel Production From Soybean Oil
,”
Fuel
,
103
, pp.
1106
1110
.
46.
Shivani
,
P.
,
Khushbu
,
P.
,
Faldu
,
N.
,
Thakkar
,
V.
, and
Shubramanian
,
R. B.
,
2011
, “
Extraction and Analysis of Jatropha Curcas L. Seed Oil
,”
Afr. J. Biotechnol.
,
10
(
79
), pp.
18210
18213
.
47.
Taufiq-Yap
,
Y. H.
,
Lee
,
H. V.
,
Hussein
,
M. Z.
, and
Yunus
,
R.
,
2011
, “
Calcium-Based Mixed Oxide Catalysts for Methanolysis of Jatropha curcas Oil to Biodiesel
,”
Biomass Bioenergy
,
35
(
2
), pp.
827
834
.
48.
Karna
,
S. K.
, and
Sahai
,
R.
,
2012
, “
An Overview on Taguchi Method
,”
Int. J. Eng. Math. Sci.
,
1
(
1
), pp.
1
7
.
49.
Brownlie
,
R.
,
Prowse
,
J.
, and
Phadke
,
M. S.
,
1992
, “
Robust Testing of AT&T PMX/StarMAIL Using OATS
,”
AT&T Techn. J.
,
71
(
3
), pp.
41
47
.
50.
Antony
,
J.
,
2001
, “
Simultaneous Optimisation of Multiple Quality Characteristics in Manufacturing Processes Using Taguchi's Quality Loss Function
,”
Int. J. Adv. Manuf. Technol.
,
17
(
2
), pp.
134
138
.
51.
Bharadwaz
,
Y. D.
,
Rao
,
B. G.
,
Rao
,
V. D.
, and
Anusha
,
C.
,
2016
, “
Improvement of Biodiesel Methanol Blends Performance in a Variable Compression Ratio Engine Using Response Surface Methodology
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1201
1209
.
52.
Seelam
,
N.
,
Gugulothu
,
S. K.
,
Reddy
,
R. V.
, and
Jagadeshwar
,
K.
,
2022
, “
Influence of 1-Pentanol as the Renewable Fuel Blended With Hydrogen on the Diesel Engine Characteristics and Trade-off Study With Variable Injection Timing
,”
Int. J. Hydrog. Energy.
,
47
(
1
), pp.
1
16
.
53.
Wang
,
X.
,
Huang
,
Z.
,
Kuti
,
O. A.
,
Zhang
,
W.
, and
Nishida
,
K.
,
2010
, “
Experimental and Analytical Study on Biodiesel and Diesel Spray Characteristics Under Ultra-High Injection Pressure
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
659
666
.
54.
Box
,
G. E.
, and
Hunter
,
J. S.
,
1957
, “
Multi-Factor Experimental Designs for Exploring Response Surfaces
,”
Ann. Math. Stat.
,
10
(
2
), pp.
195
241
.
55.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
Hoboken, NJ
.
56.
Guido
,
C.
,
Beatrice
,
C.
, and
Napolitano
,
P.
,
2013
, “
Application of Bioethanol/RME/Diesel Blend in a Euro5 Automotive Diesel Engine: Potentiality of Closed Loop Combustion Control Technology
,”
Appl. Energy
,
102
, pp.
13
23
.
You do not currently have access to this content.