Abstract

In this work, we present our advances to develop and apply digital twins for drilling fluids and associated wellbore phenomena during drilling operations. A drilling fluid digital twin is a series of interconnected models that incorporate the learning from the past historical data in a wide range of operational settings to determine the fluids properties in real-time operations. Our specific focus is on prediction of cuttings bed thickness along the wellbore in hole cleaning and prediction of high-pressure high-temperature (HPHT) rheological properties (in downhole conditions). In both applications, we present procedures to develop accurate digital twins for prediction of drilling fluid properties in real-time drilling operations. In the hole cleaning application, we develop accurate computational fluid dynamics (CFD) models to capture the effects of rotation, eccentricity, and bed height on local fluid velocities above cuttings bed. We then run 55,000 CFD simulations for a wide range of operational settings to generate training data for machine learning. For rheology monitoring, thousands of lab experiment records are collected as training data for machine learning. In this case, the HPHT rheological properties are determined based on rheological measurement in the American Petroleum Institute (API) condition (14.7 psi and 150 °F) together with the fluid type and composition data. We compare the results of the application of several machine learning algorithms to represent CFD simulations (for hole cleaning) and lab experiments (for monitoring HPHT rheological properties). Rotating cross-validation method is applied to ensure accurate and robust results. In both cases, models from the gradient boosting and the artificial neural network algorithms provided the highest accuracy (about 0.95 in terms of R2) for test datasets. With developments presented in this paper, the hole cleaning calculations can be performed in real time, and the HPHT rheological properties of drilling fluids can be estimated at the rig site avoiding the need to wait for the laboratory experimental results.

References

1.
Mitchell
,
R. F.
,
Miska
,
S.
, and
Aadnøy
,
B. S.
,
2011
,
Fundamentals of Drilling Engineering
,
Society of Petroleum Engineers
,
Richardson, TX
.
2.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.
3.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
.
4.
Grange
,
E. L.
,
2018
, “
A Roadmap for Adopting a Digital Lifecycle Approach to Offshore Oil and Gas Production
,”
Offshore Technology Conference
,
Houston, TX
,
April
.
5.
Shirangi
,
M. G.
,
Furlong
,
E.
, and
Sims
,
K. S.
,
2020
, “
Digital Twins for Well Planning and Bit Dull Grade Prediction
,”
SPE Norway Subsurface Conference
,
Virtual, Online
,
November
.
6.
Samnejad
,
M.
,
Gharib Shirangi
,
M.
, and
Ettehadi
,
R.
,
2020
, “
A Digital Twin of Drilling Fluids Rheology for Real-Time Rig Operations
,”
Offshore Technology Conference
,
Houston, TX
,
May
.
7.
Popp
,
T.
,
Shirangi
,
M. G.
,
Nipen
,
O. P.
, and
Berggreen
,
A.
,
2020
, “
Prescriptive Data Analytics to Optimize Casing Exits
,”
IADC/SPE International Drilling Conference and Exhibition
,
Galveston, TX
,
March
.
8.
Mahmoud
,
A. A.
,
Elzenary
,
M.
, and
Elkatatny
,
S.
,
2020
, “
New Hybrid Hole Cleaning Model for Vertical and Deviated Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
034501
.
9.
Siddig
,
O.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2020
, “
A Review of Different Approaches for Water-Based Drilling Fluid Filter Cake Removal
,”
J. Pet. Sci. Eng.
,
192
, p.
107346
.
10.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
11.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012301
.
12.
Aragall Tersa
,
R.
,
2016
, “
Improvements of Cuttings Transport Models Through Physical Experiments and Numerical Investigations of Solid–Liquid Transport
,”
Doctoral dissertation
,
Clausthal University of Technology
,
Clausthal-Zellerfeld, Germany
.
13.
Nazari
,
T.
,
Hareland
,
G.
, and
Azar
,
J. J.
,
2010
, “
Review of Cuttings Transport in Directional Well Drilling: Systematic Approach
,”
SPE Western Regional Meeting
,
Anaheim, CA
,
May
.
14.
Cayeux
,
E.
,
Mesagan
,
T.
,
Tanripada
,
S.
,
Zidan
,
M.
, and
Fjelde
,
K. K.
,
2014
, “
Real-Time Evaluation of Hole-Cleaning Conditions With a Transient Cuttings-Transport Model
,”
SPE Drill. Completion
,
29
(
1
), pp.
5
21
.
15.
Ignatenko
,
Y.
,
Bocharov
,
O.
,
Gavrilov
,
A.
, and
May
,
R.
,
2018
, “
Steady-State Cuttings Transport Simulation in Horizontal Borehole Annulus
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Madrid, Spain
,
June 17–22
.
16.
Clark
,
R. K.
, and
Bickham
,
K. L.
,
1994
, “
A Mechanistic Model for Cuttings Transport
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
September
.
17.
Bassal
,
A. A.
,
1995
, “
The Effect of Drillpipe Rotation on Cuttings Transport in Inclined Wellbores
,”
Master thesis
,
University of Tulsa
,
Tulsa, OK
.
18.
Sanchez
,
R. A.
,
Azar
,
J. J.
,
Bassal
,
A. A.
, and
Martins
,
A. L.
,
1999
, “
Effect of Drillpipe Rotation on Hole Cleaning During Directional-Well Drilling
,”
SPE J.
,
4
(
2
), pp.
101
108
.
19.
Ozbayoglu
,
M. E.
,
Saasen
,
A.
,
Sorgun
,
M.
, and
Svanes
,
K.
,
2008
, “
Effect of Pipe Rotation on Hole Cleaning for Water-Based Drilling Fluids in Horizontal and Deviated Wells
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Jakarta, Indonesia
,
August
.
20.
Ozbayoglu
,
M. E.
,
Saasen
,
A.
,
Sorgun
,
M.
, and
Svanes
,
K.
,
2010
, “
Critical Fluid Velocities for Removing Cuttings Bed Inside Horizontal and Deviated Wells
,”
Pet. Sci. Technol.
,
28
(
6
), pp.
594
602
.
21.
Jalukar
,
L. S.
,
1993
, “
A Study of Hole Size Effect on Critical and Subcritical Drilling Fluid Velocities in Cuttings Transport for Inclined Wellbores
,”
Master thesis
,
University of Tulsa
,
Tulsa, OK
.
22.
Zhang
,
F.
,
2015
, “
Numerical Simulation and Experimental Study of Cuttings Transport in Intermediate Inclined Wells
,”
Doctoral dissertation
,
The University of Tulsa
,
Tulsa, OK
.
23.
Lockett
,
T. J.
,
1992
, “
Numerical Simulation of Inelastic Non-Newtonian Fluid Flows in Annuli
,”
Doctoral dissertation
University of London
,
London, UK
.
24.
Gavrilov
,
A.
,
Ignatenko
,
Y.
,
Bocharov
,
O.
, and
Aragall
,
R.
,
2020
, “
Turbulent Flow Simulation of Power-Law Fluid in Annular Channel
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Virtual, Online
,
Aug. 3–7
.
25.
Gavrilov
,
A. A.
,
Minakov
,
A. V.
,
Dekterev
,
A. A.
, and
Rudyak
,
V. Y.
,
2011
, “
A Numerical Algorithm for Modeling Laminar Flows in an Annular Channel With Eccentricity
,”
J. Appl. Ind. Math.
,
5
(
4
), pp.
559
568
.
26.
Gavrilov
,
A. A.
,
Minakov
,
A. V.
,
Dekterev
,
A. A.
, and
Rudyak
,
V. Y.
,
2012
, “
Numerical Algorithm for Fully Developed Laminar Flow of a Non-Newtonian Fluid Through an Eccentric Annulus
,”
Vychisl. Tekhnol.
,
17
(
1
), pp.
44
56
.
27.
Gavrilov
,
A. A.
, and
Rudyak
,
V. Y.
,
2014
, “
A Model of Averaged Molecular Viscosity for Turbulent Flow of Non-Newtonian Fluids
,”
J. Siber. Federal University. Math. Phys.
,
7
(
1
), pp.
46
57
.
28.
Gavrilov
,
A. A.
, and
Rudyak
,
V. Y.
,
2016
, “
Reynolds-Averaged Modeling of Turbulent Flows of Power-Law Fluids
,”
J. Non-Newtonian Fluid Mech.
,
227
, pp.
45
55
.
29.
Ofei
,
T. N.
,
Lund
,
B.
,
Saasen
,
A.
, and
Sangesland
,
S.
,
2022
, “
The Effect of Oil-Water Ratio on Rheological Properties and Sag Stability of Oil-Based Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
073008
.
30.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
31.
Powell
,
D.
,
2017
, “
Simulation and Analysis of a Drilling Fluid Using a Herschel-Bulkley Model
,”
Master thesis
University of New Mexico
,
Albuquerque, NM
.
32.
Kelessidis
,
V. C.
,
Dalamarinis
,
P.
, and
Maglione
,
R.
,
2011
, “
Experimental Study and Predictions of Pressure Losses of Fluids Modeled as Herschel–Bulkley in Concentric and Eccentric Annuli in Laminar, Transitional and Turbulent Flows
,”
J. Pet. Sci. Eng.
,
77
(
3–4
), pp.
305
312
.
33.
Hemphill
,
T.
,
Campos
,
W.
, and
Pilehvari
,
A.
,
1993
, “
Yield-Power Law Model More Accurately Predicts Mud Rheology
,”
Oil Gas J.
,
91
(
34
).
34.
Saasen
,
A.
, and
Ytrehus
,
J. D.
,
2018
, “
Rheological Properties of Drilling Fluids: Use of Dimensionless Shear Rates in Herschel–Bulkley and Power-Law Models
,”
Appl. Rheol.
,
28
, pp.
1
6
.
35.
American Petroleum Institute
,
2006
,
API Recommended Practice on the Rheology and Hydraulics of Oilwell Drilling Fluids
,
American Petroleum Institute
.
36.
Bizhani
,
M.
, and
Kuru
,
E.
,
2018
, “
Critical Review of Mechanistic and Empirical (Semimechanistic) Models for Particle Removal From Sandbed Deposits in Horizontal Annuli With Water
,”
SPE J.
,
23
(
2
), pp.
237
255
.
37.
Hemphill
,
T.
, and
Ravi
,
K.
,
2006
, “
Pipe Rotation and Hole Cleaning in Eccentric Annulus
,”
SPE Drilling Conference
,
Miami, FL
,
February
.
38.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, 2nd ed.,
Springer
,
New York
.
39.
Kamrava
,
S.
,
Tahmasebi
,
P.
, and
Sahimi
,
M.
,
2019
, “
Enhancing Images of Shale Formations by a Hybrid Stochastic and Deep Learning Algorithm
,”
Neural Networks
,
118
, pp.
310
320
.
40.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
41.
Shirangi
,
M. G.
,
Oruganti
,
Y.
,
Wilson
,
T.
,
Furlong
,
E.
,
Winter
,
E.
,
Martin
,
J.
, and
Yancy
,
R.
,
2019
, “
Prescriptive Analytics for Completion Optimization in Unconventional Resources
,”
SPE Western Regional Meeting
,
San Jose, CA
,
April
.
42.
Hutter
,
F.
,
Kotthoff
,
L.
, and
Vanschoren
,
J.
,
2019
,
Automated Machine Learning: Methods, Systems, Challenges
,
Springer Nature
,
Cham, Switzerland
.
43.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
. https://www.jstor.org/stable/2699986
44.
Gascon
,
M.
,
Kumar
,
N.
, and
Ghosh
,
R.
,
2020
, “
Predicting Power Plant Equipment Life Using Machine Learning
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070908
.
You do not currently have access to this content.