Abstract

This article focuses on the rearrangement of the structure of the photovoltaic (PV) array under different shading conditions. It aims to analyze the mismatch power losses (MPLs) due to irregular illumination over PV array (PVA). The impact of partial irradiance not only affects the electrical power but also causes multiple peaks in the P-V and I-V curves. The formulation of the best PVA configuration (PVAC) to achieve maximum output even under partial shading conditions is the deciding factor for the topologies considered. To aid the maximum power extraction, a new SuDoKu PVAC is designed like hyper SuDoKu (HS). This new structure is compared with the already existing PVACs such as bridge-link, honey-comb, series-parallel, total cross-tied, and SuDoKu in the effect of considerable cases of shadowing. matlab/simulink is used for the designing, and computer-based modeling of all these PVACs is considered in this study. The evaluation of these arrangements has been done by keeping several performance factors as the deciding pivot points. These factors include MPL, efficiency, global maximum power point (GMPP), and fill factor (FF). The results obtained through this document suggest that the HS arrangement proposed here gives the best outcome for each shading condition. The proposed HS structural arrangement of PVA deals with significantly superior GMPP, FF, and efficiency while maintaining minimum MPL in comparison to other arrangements.

References

1.
Liu
,
L.
, and
Liu
,
C.
,
2012
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
2.
Anjum
,
S.
,
Mukherjee
,
V.
, and
Mehta
,
G.
,
2020
, “
Performance Enhancement of Photovoltaic Array Configurations With Blocking p-MOSFETS Under Partial Shading Condition
,”
Energy Sources, Part A
, pp.
1
20
.
3.
Ammar
,
M. B.
,
Ammar
,
R. B.
, and
Oualha
,
A.
,
2020
, “
Photovoltaic Power Prediction for Solar Car Park Lighting Office Energy Management
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031303
.
4.
Mellit
,
A.
,
Tina
,
G. M.
, and
Kalogirou
,
S. A.
,
2018
, “
Fault Detection and Diagnosis Methods for Photovoltaic Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
1
17
.
5.
Patel
,
H.
, and
Agarwal
,
V.
,
2008
, “
MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics
,”
IEEE Trans. Energy Convers.
,
23
(
1
), pp.
302
310
.
6.
Danish
,
S.
,
Mehta
,
G.
, and
Yadav
,
V. K.
,
2017
, “
Assessing the Performance of Partially Shaded PV Array Under Different Radiations
,”
International Conference on Computing, Communication and Networking Technologies
,
Delhi, India
,
July 3–5
, pp.
1
3
.
7.
Belhaouas
,
N.
,
Cheikh
,
M.-S. A.
,
Agathoklis
,
P.
,
Oularbi
,
M.-R.
,
Amrouche
,
B.
,
Sedraoui
,
K.
, and
Djilali
,
N.
,
2017
, “
PV Array Power Output Maximization Under Partial Shading Using New Shifted PV Array Arrangements
,”
Appl. Energy
,
187
, pp.
326
337
.
8.
Bernardini
,
A.
,
Sarti
,
A.
,
Maffezzoni
,
P.
, and
Daniel
,
L.
,
2018
, “
Wave Digital-Based Variability Analysis of Electrical Mismatch in Photovoltaic Arrays
,”
Circuits and Systems (ISCAS) IEEE International Symposium on IEEE
,
Florence, Italy
,
May 27–30
, pp.
1
5
.
9.
Li
,
G.
,
Xuan
,
Q.
,
Pei
,
G.
,
Su
,
Y.
, and
Ji
,
J.
,
2018
, “
Effect of Non-Uniform Illumination and Temperature Distribution on Concentrating Solar Cell—A Review
,”
Energy
,
144
, pp.
1119
1136
.
10.
Wang
,
Y.-J.
, and
Hsu
,
P.-C.
,
2011
, “
An Investigation on Partial Shading of PV Modules With Different Connection Configurations of PV Cells
,”
Energy
,
36
(
5
), pp.
3069
3078
.
11.
Pendem
,
S. R.
, and
Mikkili
,
S.
,
2018
, “
Modeling, Simulation and Performance Analysis of Solar PV Array Configurations (Series, Series-Parallel and Honey-Comb) to Extract Maximum Power Under Partial Shading Conditions
,”
Energy Rep.
,
4
, pp.
274
287
.
12.
Gautam
,
N. K.
, and
Kaushika
,
N. D.
,
2002
, “
Reliability Evaluation of Solar Photovoltaic Arrays
,”
Sol. Energy
,
72
(
2
), pp.
129
141
.
13.
Bingöl
,
O.
, and
Özkaya
,
B.
,
2018
, “
Analysis and Comparison of Different PV Array Configurations Under Partial Shading Conditions
,”
Sol. Energy
,
160
, pp.
336
343
.
14.
Pendem
,
S. R.
, and
Mikkili
,
S.
,
2018
, “
Modeling and Performance Assessment of PV Array Topologies Under Partial Shading Conditions to Mitigate the Mismatching Power Losses
,”
Sol. Energy
,
160
, pp.
303
321
.
15.
Laudani
,
A.
,
Maria Lozito
,
G.
,
Lucaferri
,
V.
,
Radicioni
,
M.
, and
Riganti Fulginei
,
F.
,
2018
, “
On Circuital Topologies and Reconfiguration Strategies for PV Systems in Partial Shading Conditions: A Review
,”
AIMS Energy
,
6
(
5
), pp.
735
763
.
16.
La Manna
,
D.
,
Li Vigni
,
V.
,
Riva Sanseverino
,
E.
,
Di Dio
,
V.
, and
Romano
,
P.
,
2014
, “
Reconfigurable Electrical Interconnection Strategies for Photovoltaic Arrays: A Review
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
412
426
.
17.
Salameh
,
Z. M.
, and
Dagher
,
F.
,
1990
, “
The Effect of Electrical Array Reconfiguration on the Performance of A PV Powered Volumetric Water Pump
,”
IEEE Trans. Energy Convers.
,
5
(
4
), pp.
653
658
.
18.
Auttawaitkul
,
Y.
,
Pungsiri
,
B.
,
Chammongthai
,
K.
, and
Okuda
,
M.
,
1998
, “
A Method of Appropriate Electrical Array Reconfiguration Management for Photovoltaic Powered Car
,”
APCCAS IEEE. Microelectronics and Integrating Systems
,
Chiangmai, Thailand
,
Nov. 24–27
, pp.
201
204
.
19.
Velasco-Quesada
,
G.
,
Guinjoan-Gispert
,
F.
,
Piqué-López
,
R.
,
Román-Lumbreras
,
M.
, and
Conesa-Roca
,
A.
,
2009
, “
Electrical PV Array Reconfiguration Strategy for Energy Extraction Improvement in Grid-Connected PV Systems
,”
IEEE Trans. Ind. Electron.
,
56
(
11
), pp.
4319
4331
.
20.
El-Dein
,
M. Z.
,
Kazerani
,
M.
, and
Salama
,
M. M. A.
,
2013
, “
Optimal Photovoltaic Array Reconfiguration to Reduce Partial Shading Losses
,”
IEEE Trans. Sustain Energy
,
4
(
1
), pp.
145
153
.
21.
Nguyen
,
D.
, and
Lehman
,
B.
,
2008
, “
A Reconfigurable Solar Photovoltaic Array Under Shadow Conditions
,”
Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition
,
Austin, TX
,
Feb. 24–28
, pp.
980
986
.
22.
Parlak
,
,
2014
, “
PV Array Reconfiguration Method Under Partial Shading Conditions
,”
Int. J. Electr. Power Energy Syst.
,
63
, pp.
713
721
.
23.
Sai Krishna
,
G. S.
, and
Moger
,
T.
,
2019
, “
Reconfiguration Strategies for Reducing Partial Shading Effects In Photovoltaic Arrays: State of the Art
,”
Sol. Energy
,
182
, pp.
429
452
.
24.
Vijayalekshmy
,
S.
,
Bindu
,
G. R.
, and
Rama Iyer
,
S. R.
,
2016
, “
A Novel Zig-Zag Scheme for Power Enhancement of Partially Shaded Solar Arrays
,”
Sol. Energy
,
135
, pp.
92
102
.
25.
Srinivasa Rao
,
P.
,
Saravana Ilango
,
G.
, and
Nagamani
,
C.
,
2014
, “
Maximum Power From PV Arrays Using a Fixed Configuration Under Different Shading Conditions
,”
IEEE J. Photovolt.
,
4
(
2
), pp.
679
686
.
26.
Yadav
,
A. S.
,
Pachauri
,
R. K.
,
Chauhan
,
Y. K.
,
Choudhury
,
S.
, and
Singh
,
R.
,
2017
, “
Performance Enhancement of Partially Shaded PV Array Using Novel Shade Dispersion Effect on Magic-Square Puzzle Configuration
,”
Sol. Energy
,
144
, pp.
780
797
.
27.
Yadav
,
A. S.
,
Pachauri
,
R. K.
, and
Chauhan
,
Y. K.
,
2016
, “
Comprehensive Investigation of PV Arrays With Puzzle Shade Dispersion for Improved Performance
,”
Sol. Energy
,
129
, pp.
256
285
.
28.
Rani
,
B. I.
,
Ilango
,
G. S.
, and
Nagamani
,
C.
,
2013
, “
Enhanced Power Generation From PV Array Under Partial Shading Conditions by Shade Dispersion Using Sudoku Configuration
,”
IEEE Trans. Sustain Energy
,
4
(
3
), pp.
594
601
.
29.
El Iysaouy
,
L.
,
Lahbabi
,
M.
,
Baskys
,
A.
, and
Oumnad
,
A.
,
2020
, “
Performance Analysis of Partially Shaded Photovoltaic Array Using Magic Square View Configuration for Shade Dispersion
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
064502
.
30.
Job
,
D.
, and
Paul
,
V.
,
2016
, “
Recursive Backtracking for Solving 9*9 Sudoku Puzzle
,”
Bonfring Int. J. Data Min.
,
6
(
1
), pp.
7
9
.
You do not currently have access to this content.