Abstract

Well test analysis is a crucial technique to monitor reservoir performance, which is based on the theory of seepage mechanics, through the study of well test data, to identify reservoir models and estimate reservoir parameters. Reservoir model recognition is the first and essential step of well test analysis. It is usually judged by professionals’ experience, which results in low efficiency and accuracy. This paper is devoted to applying convolutional neural network (CNN) to well test analysis and proposes a new intelligent reservoir model identification method. Eight reservoir models studied in this paper include homogenous reservoirs with different outer boundaries such as infinite acting boundary, circular, single, angular, channel, U-shaped and rectangular sealing fault boundaries, and a radial composite reservoir with infinite acting boundary. Well testing data used in this paper, including actual field data and theoretical data, are generated by analytical solutions. To improve the classification accuracy of actual field data, noise processing was carried out on the data before training. The CNN that is most suitable for model recognition has been obtained through trial-and-error procedures. The availability of proposed CNN is proved with actual field cases of Daqing oil field, China. The method realizes the automatic identification of reservoir model with the total classification accuracy (TCA) of test data set of 98.68% and 95.18% for original data and noisy data, respectively.

References

1.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
.
2.
Kou
,
Z.
, and
Wang
,
H.
,
2020
, “
Transient Pressure Analysis of a Multiple Fractured Well in a Stress-Sensitive Coal Seam Gas Reservoir
,”
Energies
,
13
(
15
), p.
3849
.
3.
Wang
,
H.
,
Kou
,
Z.
,
Guo
,
J.
, and
Chen
,
Z.
,
2021
, “
A Semi-Analytical Model for the Transient Pressure Behaviors of a Multiple Fractured Well in a Coal Seam Gas Reservoir
,”
J. Pet. Sci. Eng.
,
198
, p.
108159
.
4.
Xie
,
J.
,
Luo
,
P.
,
Yang
,
Y.
,
Chai
,
X.
,
Yang
,
H.
,
Chen
,
F.
, and
Zhang
,
K.
,
2020
, “
Study on Identification of Pressure Transient Characteristics and Well Test Interpretation of Dongping Bedrock Gas Reservoir
,”
Unconv. Oil Gas
,
7
(
36
), pp.
94
99
.
5.
Bourdet
,
D.
,
2002
,
Well Test Analysis: The Use of Advanced Interpretation Models
,
Elsevier
,
New York
, p.
426
.
6.
Liu
,
J.
,
Liu
,
Z.
,
Liu
,
Q.
, and
Zuo
,
H.
,
2020
, “
The Multilayer Fractured Wells Productivity Evaluation Based on Numerical Well Test in Shenmu Gas Reservoir
,”
Unconv. Oil Gas
,
7
(
38
), pp.
79
86
.
7.
Bourdet
,
D.
,
Ayoub
,
J. A.
, and
Pirard
,
Y. M.
,
1989
, “
Use of Pressure Derivative in Well Test Interpretation
,”
SPE Form. Eval.
,
4
(
2
), pp.
293
302
.
8.
Li
,
D.
,
Qi
,
Y.
,
Da
,
Y.
,
Xia
,
D.
,
Zha
,
W.
,
Tan
,
J.
, and
Lu
,
D.
,
2020
, “
Low Velocity Nonlinearity is the Flow Mechanism of Low Permeability Reservoir
,”
Unconv. Oil Gas
,
7
(
4
), pp.
1
8
.
9.
Lin
,
B.
,
Guo
,
J.
,
Liu
,
X.
,
Xiang
,
J.
, and
Zhong
,
H.
,
2020
, “
Prediction of Flowback Ratio and Production in Sichuan Shale Gas Reservoirs and Their Relationships With Stimulated Reservoir Volume
,”
J. Pet. Sci. Eng.
,
184
, p.
106529
.
10.
Zhang
,
L.
,
Xu
,
C.
,
Zhang
,
K.
,
Yao
,
C.
,
Yang
,
Y.
, and
Yao
,
J.
,
2020
, “
Production Optimization for Alternated Separate-Layer Water Injection in Complex Fault Reservoirs
,”
J. Pet. Sci. Eng.
,
193
, p.
107409
.
11.
Lee
,
K. J.
,
2020
, “
Data-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123301
.
12.
Rashidi
,
S.
, and
Khajehesfandeari
,
M.
,
2021
, “
Committee Machine-Ensemble as a General Paradigm for Accurate Prediction of Bubble Point Pressure of Crude Oil
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
023006
.
13.
Feng
,
Q.
,
Y
,
L. I.
,
Wang
,
S.
,
Ren
,
J.
,
Zhou
,
D.
, and
Fan
,
K.
,
2020
, “
Predicting Gas Migration Development Using Deep Convolutional Generative Adversarial Network
,”
J. China Univ. Pet., Ed. Nat. Sci.
,
4
, pp.
20
27
.
14.
Kharrat
,
R.
, and
Razavi
,
S. M.
,
2008
, “
Determination of Reservoir Model From Well Test Data, Using an Artificial Neural Network
,”
Sci. Iran.
,
15
(
4
), pp.
487
493
.
15.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2011
, “
Automatic Recognition of Oil Reservoir Models From Well Testing Data by Using Multi-Layer Perceptron Networks
,”
J. Pet. Sci. Eng.
,
77
(
3–4
), pp.
254
262
.
16.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ghaffarian
,
N.
,
2016
, “
Hydrocarbon Reservoir Model Detection From Pressure Transient Data Using Coupled Artificial Neural Network—Wavelet Transform Approach
,”
Appl. Soft Comput.
,
47
, pp.
63
75
.
17.
Ghaffarian
,
N.
,
Eslamloueyan
,
R.
, and
Vaferi
,
B.
,
2014
, “
Model Identification for Gas Condensate Reservoirs by Using ANN Method Based on Well Test Data
,”
J. Pet. Sci. Eng.
,
123
, pp.
20
29
.
18.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
Comput. Sci.
,
arXiv:1409.1556
.
19.
Zhuang
,
H.
,
Wang
,
C.
,
Li
,
C.
,
Wang
,
Q.
, and
Zhou
,
X.
,
2017
, “
Natural Language Processing Service Based on Stroke-Level Convolutional Networks for Chinese Text Classification
,”
IEEE International Conference on Web Services
,
Honolulu, HI
,
June 25–30
.
20.
Mon
,
A. N.
,
Pa
,
W. P.
, and
Thu
,
Y. K.
,
2017
, “
Exploring the Effect of Tones for Myanmar Language Speech Recognition Using Convolutional Neural Network (CNN)
,”
International Conference of the Pacific Association for Computational Linguistics
,
Singapore
,
August
.
21.
Jérémie
,
T.
,
Frédéric
,
B.
,
Thierry
,
A.
, and
Benoit
,
F.
,
2016
, “
Joint Syntactic and Semantic Analysis With a Multitask Deep Learning Framework
,”
Interspeech
,
California
,
September
.
22.
Tian
,
C.
, and
Horne
,
R. N.
,
2017
, “
Recurrent Neural Networks for Permanent Downhole Gauge Data Analysis
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
October
.
23.
Zhang
,
D.
,
Chen
,
Y.
, and
Meng
,
J.
,
2018
, “
Synthetic Well Logs Generation via Recurrent Neural Networks
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
598
607
.
24.
Zha
,
W.
,
Li
,
X.
,
Li
,
D.
,
Xing
,
Y.
,
He
,
L.
, and
Tan
,
J.
,
2020
, “
Shale Digital Core Image Generation Based on Generative Adversarial Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033003
.
25.
Wang
,
N.
,
Zhang
,
D.
,
Chang
,
H.
, and
Li
,
H.
,
2020
, “
Deep Learning of Subsurface Flow via Theory-Guided Neural Network
,”
J. Hydrol.
,
584
, p.
124700
.
26.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2015
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
International Conference on Neural Information Processing Systems
,
Turkey
,
November
.
27.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge
.
28.
Hadji
,
I.
, and
Wildes
,
R. P.
,
2018
, “
What do We Understand About Convolutional Networks?
,” arXiv preprint arXiv:1803.08834.
29.
Li
,
D.
,
Liu
,
X.
,
Zha
,
W.
,
Yang
,
J.
, and
Lu
,
D.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for a Radial Composite Reservoir
,”
Pet. Explor. Dev.
,
47
(
3
), pp.
583
591
.
30.
Liu
,
X.
,
Li
,
D.
,
Yang
,
J.
,
Zha
,
W.
,
Zhou
,
Z.
,
Gao
,
L.
, and
Han
,
J.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for Infinite Reservoir
,”
J. Pet. Sci. Eng.
,
195
(
107618
).
31.
Alqahtani
,
N.
,
Armstrong
,
R. T.
, and
Mostaghimi
,
P.
,
2018
, “
Deep Learning Convolutional Neural Networks to Predict Porous Media Properties
,”
SPE Asia Pacific oil & Gas Conference and Exhibition
,
Australia
,
October
, SPE 191906-MS.
32.
Bourdet
,
D.
,
Alagoa
,
A.
,
Ayoub
,
J. A.
, and
Pirard
,
Y. M.
,
1984
, “
New Type Curves aid Analysis of Fissured Zone Well Tests
,”
World Oil
,
198
(
5
), pp.
111
124
.
33.
Abdelaziz
,
B.
, and
Tiab
,
D.
,
2004
, “
Pressure Behaviour of a Well Between Two Intersecting Leaky Faults
,”
SPE Presented at the Nigeria Annual International Conference and Exhibition
,
Abuja Nigeria
, Paper No. 88873, pp.
1
17
.
34.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
You do not currently have access to this content.