Abstract

The lithology of the formation is known to affect the drilling operation. Litho-facies help in the quantification of the formation properties, which optimizes the drilling parameters. The proposed work uses the artificial neural network algorithm and an optimizer to develop a working model for predicting the lithology of any formation within the study area in real-time. The proposed model is trained using the formation data comprising 15-dependent variables from the Eagleford region of the United States of America. It builds a method for measuring or forecasting litho-facies in real-time when drilling through a formation. It uses general drilling parameters for better precision, including rate of penetration, rotation per minute, surface torque, differential pressure, gamma ray correlation, and a D-exponent correlation function. The proposed model compares and assesses various first-order optimization algorithm's efficiency, such as adaptive moment estimation, adaptive gradient, root-mean-square propagation, and stochastic gradient descent with traditional artificial neural network in quantitative litho-facies detection. The model can predict the complex lithology for vertical/inclined/horizontal wellbores in real-time, making it a novel algorithm in the industry. The developed algorithm illustrates an accuracy of 86% using ADAM optimizer when tested with the existing data and improves as the model is trained with more data.

References

1.
Bjørlykke
,
K.
,
2010
,
Petroleum Geoscience: From Sedimentary Environments to Rock Physics
,
Springer
, pp.
1
508
.
2.
Adeoti
,
L.
,
Adesanya
,
O. Y.
,
Oyedele
,
K. F.
,
Afinotan
,
I. P.
, and
Adekanle
,
A.
,
2018
, “
Lithology and Fluid Prediction From Simultaneous Seismic Inversion Over Sandfish Field, Niger Delta, Nigeria
,”
Geosci. J.
,
22
(
1
), pp.
155
169
.
3.
Falconer
,
I. G.
,
Burgess
,
T. M.
, and
Sheppard
,
M. C.
,
1988
, “
Separating Bit and Lithology Effects from Drilling Mechanics Data
,”
IADC/SPE Drilling Conference
,
Dallas, TX
,
February
.
4.
Moazzeni
,
A.
,
Nabaei
,
M.
, and
Kharrat
,
R.
,
2011
, “
A Breakthrough in Controlling Lost Circulation in a Pay Zone by Optimizing the Particle Size Distribution of Shellfish and Limestone Chips
,”
Pet. Sci. Technol.
,
30
(
3
), pp.
290
306
.
5.
Yi
,
P.
,
Kumar
,
A.
, and
Samuel
,
R.
,
2015
, “
Real-time Rate of Penetration Optimization Using the Shuffled Frog Leaping Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032902
.
6.
Ashena
,
R.
,
Rabiei
,
M.
,
Rasouli
,
V.
,
Mohammadi
,
A. H.
, and
Mishani
,
S.
,
2021
, “
Drilling Parameters Optimization Using an Innovative Artificial Intelligence Model
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052110
.
7.
Abugharara
,
A. N.
,
Mohamed
,
B.
,
Hurich
,
C.
,
Molgaard
,
J.
, and
Butt
,
S. D.
,
2019
, “
Experimental Investigation of the Effect of Shale Anisotropy Orientation on the Main Drilling Parameters Influencing Oriented Drilling Performance in Shale
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102904
.
8.
Jahanbakhshi
,
R.
, and
Keshavarzi
,
R.
,
2016
, “
Intelligent Classifier Approach for Prediction and Sensitivity Analysis of Differential Pipe Sticking: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052904
.
9.
Gamal
,
H.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Haidary
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093004
.
10.
Siddig
,
O. M.
,
Al-Afnan
,
S. F.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2022
, “
Drilling Data-Based Approach to Build a Continuous Static Elastic Moduli Profile Utilizing Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023001
.
11.
Wang
,
K.
, and
Zhang
,
L.
,
2008
, “
Predicting Formation Lithology From log Data by Using a Neural Network
,”
Pet. Sci.
,
5
(
3
), pp.
242
246
.
12.
Moazzeni
,
A.
,
Nabaei
,
M.
, and
Jegarluei
,
S. G.
,
2012
, “
Decision Making for Reduction of Nonproductive Time Through an Integrated Lost Circulation Prediction
,”
Pet. Sci. Technol.
,
30
(
20
), pp.
2097
2107
.
13.
Onyia
,
E. C.
,
1988
, “
SPE 18166 Relationships Between Formation Strength, Drilling Strength, and Electric Log Properties
,”
14.
Mohammad Ali
,
A. M.
,
2015
, “
Artificial Intelligence for Lithology Identification Through Real-Time Drilling Data
,”
J. Earth Sci. Clim. Change
,
6
(
3
), pp.
3
6
.
15.
Karimi
,
M.
,
2013
, “
Drill-cuttings Analysis for Real-Time Problem Diagnosis and Drilling Performance Optimization
,”
Society of Petroleum Engineers—SPE Asia Pacific Oil Gas Conference and Exhibition APOGCE 2013 Maximising the Mature, Elevating the Young
, vol.
2
, pp.
1295
1305
.
16.
Tiainen
,
S.
,
King
,
H.
,
Cubitt
,
C.
,
Karalaus
,
E.
,
Prater
,
T.
, and
Willis
,
B.
,
2002
, “
Drill Cuttings Analysis—A New Approach To Reservoir Description and Characterisation; Examples From the Cooper Basin, Australia
,”
APPEA J.
,
42
(
1
), p.
495
.
17.
Bhattacharya
,
S.
,
Carr
,
T. R.
, and
Pal
,
M.
,
2016
, “
Comparison of Supervised and Unsupervised Approaches for Mudstone Lithofacies Classification: Case Studies From the Bakken and Mahantango-Marcellus Shale, USA
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
1119
1133
.
18.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
19.
Anifowose
,
F.
,
Labadin
,
J.
, and
Abdulraheem
,
A.
,
2015
, “
Improving the Prediction of Petroleum Reservoir Characterization with a Stacked Generalization Ensemble Model of Support Vector Machines
,”
Appl. Soft Comput.
,
26
, pp.
483
496
.
20.
Xu
,
C.
,
Heidari
,
Z.
, and
Torres-Verd´in
,
C.
,
2012
, “
Rock Classification in Carbonate Reservoirs Based on Static and Dynamic Petrophysical Properties Estimated From Conventional Well Logs
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
, vol.
5
, pp.
3972
3986
.
21.
Lee
,
S. H.
, and
Datta-Gupta
,
A.
,
1999
, “
Electrofacies Characterization and Permeability Predictions in Carbonate Reservoirs: Role of Multivariate Analysis and Nonparametric Regression
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
October
, pp.
409
421
.
22.
Abiodun
,
O. I.
,
Jantan
,
A.
,
Omolara
,
A. E.
,
Dada
,
K. V.
,
Mohamed
,
N. A. E.
, and
Arshad
,
H.
,
2018
, “
State-of-the-art in Artificial Neural Network Applications: A Survey
,”
Heliyon
,
4
(
11
), p.
e00938
.
23.
Sharma
,
V.
,
Rai
,
S.
, and
Dev
,
A.
,
2012
, “
A Comprehensive Study of Artificial Neural Networks
,”
Int. J. Adv. Res. Comput. Sci. Software Eng.
,
2
(
10
), pp.
278
284
.
24.
Qi
,
L.
, and
Carr
,
T. R.
,
2006
, “
Neural Network Prediction of Carbonate Lithofacies From Well Logs, Big Bow and Sand Arroyo Creek Fields, Southwest Kansas
,”
Comput. Geosci.
,
32
(
7
), pp.
947
964
.
25.
Wang
,
G.
, and
Carr
,
T. R.
,
2012
, “
Methodology of Organic-Rich Shale Lithofacies Identification and Prediction: A Case Study From Marcellus Shale in the Appalachian Basin
,”
Comput. Geosci.
,
49
, pp.
151
163
.
26.
Avanzini
,
A.
,
Balossino
,
P.
,
Brignoli
,
M.
,
Spelta
,
E.
, and
Tarchiani
,
C.
,
2016
, “
Lithologic and Geomechanical Facies Classification for Sweet Spot Identification in Gas Shale Reservoir
,”
Interpretation
,
4
(
3
), pp.
SL21
SL31
.
27.
Bhattacharya
,
S.
,
Ghahfarokhi
,
P. K.
,
Carr
,
T. R.
, and
Pantaleone
,
S.
,
2019
, “
Application of Predictive Data Analytics to Model Daily Hydrocarbon Production Using Petrophysical, Geomechanical, Fiber-Optic, Completions, and Surface Data: A Case Study From the Marcellus Shale, North America
,”
J. Pet. Sci. Eng.
,
176
(
Jan.
), pp.
702
715
.
28.
Al-Anazi
,
A.
, and
Gates
,
I.
,
2010
, “
A Support Vector Machine Algorithm to Classify Lithofacies and Model Permeability in Heterogeneous Reservoirs
,”
Eng. Geol.
,
114
(
3–4
), pp.
267
277
.
29.
Raeesi
,
M.
,
Moradzadeh
,
A.
,
Doulati Ardejani
,
F.
, and
Rahimi
,
M.
,
2012
, “
Classification and Identification of Hydrocarbon Reservoir Lithofacies and Their Heterogeneity Using Seismic Attributes, Logs Data and Artificial Neural Networks
,”
J. Pet. Sci. Eng.
,
82–83
, pp.
151
165
.
30.
Sebtosheikh
,
M.
, and
Salehi
,
A.
,
2015
, “
Lithology Prediction by Support Vector Classifiers Using Inverted Seismic Attributes Data and Petrophysical Logs as a new Approach and Investigation of Training Data set Size Effect on Its Performance in a Heterogeneous Carbonate Reservoir
,”
J. Pet. Sci. Eng.
,
134
, pp.
143
149
.
31.
Horrocks
,
T.
,
Holden
,
E. J.
, and
Wedge
,
D.
,
2015
, “
Evaluation of Automated Lithology Classification Architectures Using Highly-Sampled Wireline Logs for Coal Exploration
,”
Comput. Geosci.
,
83
, pp.
209
218
.
32.
Al-Mudhafar
,
W. J.
,
2017
, “
Integrating Well log Interpretations for Lithofacies Classification and Permeability Modeling Through Advanced Machine Learning Algorithms
,”
J. Pet. Explor. Prod. Technol.
,
7
(
4
), pp.
1023
1033
.
33.
Tewari
,
S.
, and
Dwivedi
,
U. D.
,
2019
, “
Ensemble-Based Big Data Analytics of Lithofacies for Automatic Development of Petroleum Reservoirs
,”
Comput. Ind. Eng.
,
128
, pp.
937
947
.
34.
He
,
J.
,
La Croix
,
A. D.
,
Wang
,
J.
,
Ding
,
W.
, and
Underschultz
,
J. R.
,
2019
, “
Using Neural Networks and the Markov Chain Approach for Facies Analysis and Prediction From Well Logs in the Precipice Sandstone and Evergreen Formation, Surat Basin, Australia
,”
Mar. Pet. Geol.
,
101
(
July
), pp.
410
427
.
35.
Gu
,
Y.
,
Bao
,
Z.
,
Song
,
X.
,
Patil
,
S.
, and
Ling
,
K.
,
2019
, “
Complex Lithology Prediction Using Probabilistic Neural Network Improved by Continuous Restricted Boltzmann Machine and Particle Swarm Optimization
,”
J. Pet. Sci. Eng.
,
179
(
Apr.
), pp.
966
978
.
36.
Imamverdiyev
,
Y.
, and
Sukhostat
,
L.
,
2019
, “
Lithological Facies Classification Using Deep Convolutional Neural Network
,”
J. Pet. Sci. Eng.
,
174
(
Oct.
), pp.
216
228
.
37.
Bhattacharya
,
S.
, and
Carr
,
T. R.
,
2019
, “
Integrated Data-Driven 3D Shale Lithofacies Modeling of the Bakken Formation in the Williston Basin, North Dakota, United States
,”
J. Pet. Sci. Eng.
,
177
(
Dec.
), pp.
1072
1086
.
38.
Moradi
,
M.
,
Tokhmechi
,
B.
, and
Masoudi
,
P.
,
2019
, “
Inversion of Well Logs Into Rock Types, Lithofacies and Environmental Facies, Using Pattern Recognition, a Case Study of Carbonate Sarvak Formation
,”
Carbonates Evaporites
,
34
(
2
), pp.
335
347
.
39.
Gupta
,
I.
,
Tran
,
N.
,
Devegowda
,
D.
,
Jayaram
,
V.
,
Rai
,
C.
,
Sondergeld
,
C.
, and
Karami
,
H.
,
2020
, “
Looking Ahead of the bit Using Surface Drilling and Petrophysical Data: Machine-Learning-Based Real-Time Geosteering in Volve Field
,”
SPE J.
,
25
(
2
), pp.
990
1006
.
40.
Sun
,
Z.
,
Jiang
,
B.
,
Li
,
X.
,
Li
,
J.
, and
Xiao
,
K.
,
2020
, “
A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning
,”
Energies
,
13
(
15
), pp.
1
15
.
41.
Zhao
,
T.
,
Jayaram
,
V.
,
Roy
,
A.
, and
Marfurt
,
K. J.
,
2015
, “
A Comparison of Classification Techniques for Seismic Facies Recognition
,”
Interpretation
,
3
(
4
), pp.
SAE29
SAE58
.
42.
Al-Mudhafar
,
W. J. M.
, and
Bondarenko
,
M. A.
,
2015
, “
Integrating K-Means Clustering Analysis and Generalized Additive Model for Efficient Reservoir Characterization
,”
77th EAGE Conference Exhibition 2015 Earth Science Energy Environment
,
Madrid, Spain
, pp.
2301
2306
.
43.
Kim
,
Y.
,
Hardisty
,
R.
,
Torres
,
E.
, and
Marfurt
,
K. J.
,
2018
, “
Seismic Facies Classification Using Random Forest Algorithm
,”
2018 SEG International Exposition of Annual Meeting
,
Anaheim, CA
, pp.
2161
2165
.
44.
Zhang
,
L.
, and
Zhan
,
C.
,
2017
, “
Machine Learning in Rock Facies Classification: An Application of XGBoost
,”
International Geophysical Conference
,
Qingdao, China
,
Apr. 17–20
, pp.
1371
1374
.
45.
Wood
,
D. A.
,
2019
, “
Lithofacies and Stratigraphy Prediction Methodology Exploiting an Optimized Nearest-Neighbour Algorithm to Mine Well-log Data
,”
Mar. Pet. Geol.
,
110
(
May
), pp.
347
367
.
46.
Sun
,
S.
,
Cao
,
Z.
,
Zhu
,
H.
, and
Zhao
,
J.
,
2020
, “
A Survey of Optimization Methods From a Machine Learning Perspective
,”
IEEE Trans. Cybern.
,
50
(
8
), pp.
3668
3681
.
47.
Ruder
,
S.
,
2016
, “
An Overview of Gradient Descent Optimization Algorithms
,” pp.
1
14
. [Online]. Available: http://arxiv.org/abs/1609.04747
48.
Gstalder
,
S.
, and
Raynal
,
J.
,
1966
, “
Measurement of Some Mechanical Properties of Rocks And Their Relationship to Rock Drillability
,”
J. Pet. Technol.
,
18
(
8
), pp.
991
996
.
49.
Goutte
,
C.
, and
Gaussier
,
E.
,
2005
, “
A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation
,”
Lect. Notes Comput. Sci.
,
3408
(
April
), pp.
345
359
.
50.
Nwankpa
,
C. E.
,
Ijomah
,
W.
,
Gachagan
,
A.
, and
Marshall
,
S.
,
2018
, “
Activation Functions: Comparison of Trends in Practice and Research for Deep Learning
,”
arXiv:1811.03378
https://arxiv.org/abs/1811.03378
51.
Zhang
,
Z.
, and
Sabuncu
,
M. R.
,
2018
, “
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
,”
Thirty-Second Conference on Neural Information Processing Systems
,
Montréal, Canada
.
52.
Janocha
,
K.
, and
Czarnecki
,
W. M.
,
2016
, “
On Loss Functions for Deep Neural Networks in Classification
,”
Schedae Informaticae
,
25
, pp.
49
59
.
53.
Ahmed
,
O.
,
Adeniran
,
A.
, and
Samsuri
,
A.
,
2018
, “
Rate of Penetration Prediction Utilizing Hydromechanical Specific Energy
,”
Drilling
.
54.
Abdul-Rani
,
A. M.
,
Ibrahim
,
K.
,
Ab Adzis
,
A. H.
,
Maulianda
,
B. T.
, and
Mat Asri
,
M. N.
,
2020
, “
Investigation on the Effect of Changing Rotary Speed and Weight bit on PCD Cutter Wear
,”
J. Pet. Explor. Prod. Technol.
,
10
(
3
), pp.
1063
1068
.
55.
Rooki
,
R.
,
2015
, “
Estimation of Pressure Loss of Herschel–Bulkley Drilling Fluids During Horizontal Annulus Using Artificial Neural Network
,”
J. Dispersion Sci. Technol.
,
36
(
2
), pp.
161
169
.
56.
Razi
,
M. M.
,
Mazidi
,
M.
,
Razi
,
F. M.
,
Aligolzadeh
,
H.
, and
Niazi
,
S.
,
2013
, “
Artificial Neural Network Modeling of Plastic Viscosity, Yield Point, and Apparent Viscosity for Water-Based Drilling Fluids
,”
J. Dispersion Sci. Technol.
,
34
(
6
), pp.
822
827
.
57.
Zare
,
J.
, and
Shadizadeh
,
S. R.
,
2014
, “
Managed Pressure Drilling to Increase Rate of Penetration and Reduce Formation Damage
,”
Pet. Sci. Technol.
,
32
(
15
), pp.
1833
1842
.
58.
Zhu
,
H. Y.
,
Liu
,
Q. Y.
, and
Wang
,
T.
,
2014
, “
Reducing the Bottom-Hole Differential Pressure by Vortex and Hydraulic jet Methods
,”
J. Vibroeng.
,
16
(
5
), pp.
2224
2249
.
59.
Nascimento
,
A.
,
Tamas Kutas
,
D.
,
Elmgerbi
,
A.
,
Thonhauser
,
G.
, and
Hugo Mathias
,
M.
,
2015
, “
Mathematical Modeling Applied to Drilling Engineering: An Application of Bourgoyne and Young ROP Model to a Presalt Case Study
,”
Math. Probl. Eng.
,
2015
.
60.
Solano
,
Y. P.
,
Uribe
,
R.
,
Frydman
,
M.
,
Saavedra
,
N. F.
, and
Calderón
,
Z. H.
,
2007
, “
A Modified Approach to Predict Pore Pressure Using the D Exponent Method: An Example From the Carbonera Formation, Colombia
,”
Ciencia, Tecnol. y Futur.
,
3
(
3
), pp.
103
111
.
You do not currently have access to this content.