Abstract

Fluid loss into formations is a common operational issue that is frequently encountered when drilling across naturally or induced fractured formations. This could pose significant operational risks, such as well-control, stuck pipe, and wellbore instability, which, in turn, lead to an increase of well time and cost. This research aims to use and evaluate different machine learning (ML) techniques, namely, support vector machines (SVMs), random forests, and K-nearest neighbors (K-NN) in detecting loss circulation occurrences while drilling using solely drilling surface parameters. Actual field data of seven wells, which had suffered partial or severe loss circulation, were used to build predictive models, while Well-8 was used to compare the performance of the developed models. Different performance metrics were used to evaluate the performance of the developed models. Recall, precision, and F1-score measures were used to evaluate the ability of the developed model to detect loss circulation occurrences. The results showed the K-nearest neighbors classifier achieved a high F1-score of 0.912 in detecting loss circulation occurrence in the testing set, while the random forests was the second-best classifier with almost the same F1-score of 0.910. The support vector machines achieved an F1-score of 0.83 in predicting the loss circulation occurrence in the testing set. The K-nearest neighbors outperformed other models in detecting the loss circulation occurrences in Well-8 with an F1-score of 0.80. The main contribution of this research as compared with previous studies is that it identifies losses events based on real-time measurements of the active pit volume (APV).

References

1.
Alkinani
,
H. H.
,
Al-Hameedi
,
A.
,
Flori
,
R.
,
Norman
,
S.
,
Hilgedick
,
S.
, and
Alsaba
,
M.
,
2018
, “
Updated Classification of Lost Circulation Treatments and Materials With an Integrated Analysis and Their Application
,”
The SPE Western Regional Meeting
,
Garden Grove, CA
,
Apr. 22–26
, SPE-190118-MS.
2.
Howard
,
G.
, and
Scott
,
P.
,
1951
, “
An Analysis and the Control of Lost Circulation
,”
J. Pet. Technol.
,
3
(
06
), pp.
171
182
.
3.
Miranda
,
C. R.
,
Oliveira
,
J. L.
,
Cavalcante
,
G. M. S.
,
d’Almeida
,
A. R.
,
Pereira
,
R. F. L.
,
Santos
,
R. L. L.
, and
Surmas
,
R.
,
2017
, “
Materials for Controlling Severe Lost Circulation—Laboratory Evaluation
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
,
Buenos Aires, Argentina
,
May 17–19
, SPE-185582-MS.
4.
Lavrov
,
A.
,
2016
,
Lost Circulation Mechanisms and Solutions
, 1st ed.,
Gulf Professional Publishing
,
Amsterdam, The Netherlands
.
5.
Ramasamy
,
J.
, and
Amanullah
,
M.
,
2017
, “
Novel Fibrous Lost Circulation Materials Derived From Deceased Date Tree Waste
,”
Presented at SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
, SPE-187989-MS.
6.
Kumar
,
A.
,
Savari
,
S.
,
Jamison
,
D. E.
, and
Whitfill
,
D. L.
,
2011
, “
Lost Circulation Control and Wellbore Strengthening: Looking Beyond Particle Size Distribution
,”
AADE National Technical Conference and Exhibition
,
Houston, TX
,
Apr. 12–14
, AADE-11-NTCE-21.
7.
Valverde
,
E.
, and
Goodwin
,
A.
,
2015
, “
Radio Frequency Identification (RFID)-Enabled Circulation Sub Precisely Spots Loss Circulation Material in Critical Interval
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
, SPE-174950-MS.
8.
White
,
R. J.
,
1956
, “
Lost-circulation Materials and Their Evaluation
,”
Drilling and Production Practice
,
New York, NY
,
Jan. 1
, p.
API-56-352
.
9.
Jain
,
B.
,
Khattak
,
M. A.
,
Mesa
,
A. M.
,
Al Kalbani
,
S.
,
Meyer
,
A. W.
,
Aghbari
,
S.
,
Al-Salti
,
A.
,
Hennette
,
B.
,
Khaldi
,
M.
,
Al-Yaqoubi
,
A.
, and
Al-Sharji
,
H. H.
,
2013
, “
Successful Implementation of Engineered Fiber Based Loss Circulation Control Solution to Effectively Cure Losses While Drilling, Cementing and Work Over Operations in Oman
,”
The SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
,
New Orleans, LA
,
Sept. 30–Oct. 2
, SPE-166529-MS.
10.
Ghalambor
,
A.
,
Salehi
,
S.
,
Shahri
,
M. P.
, and
Karimi
,
M.
,
2014
, “
Integrated Workflow for Lost Circulation Prediction
,”
The SPE International Symposium and Exhibition on Formation Damage Control
,
Society of Petroleum Engineers
,
Lafayette, LA
,
Feb. 26–28
, SPE-168123-MS.
11.
Rehm
,
B.
,
Schubert
,
J.
,
Haghshenas
,
A.
,
Paknejad
,
A. S.
, and
Hughes
,
J.
, eds.,
2008
,
Managed Pressure Drilling
,
Gulf Publishing Company
,
Houston, TX
.
12.
Wang
,
H.
,
Towler
,
B. F.
, and
Soliman
,
M. Y.
,
2007
, “
Fractured Wellbore Stress Analysis: Sealing Cracks to Strengthen a Wellbore
,”
The SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 20–22
, SPE-104947-MS.
13.
Lécolier
,
E.
,
Herzhaft
,
B.
,
Néau
,
L.
,
Quillien
,
B.
, and
Kieffer
,
J.
,
2005
, “
Development of a Nanocomposite gel for Lost Circulation Treatment
,”
The SPE European Formation Damage Conference
,
Scheveningen, The Netherlands
,
May 25–27
, SPE-94686-MS.
14.
Abdollahi
,
J.
,
Carlsen
,
I. M.
,
Mjaaland
,
S.
,
Skalle
,
P.
,
Rafiei
,
A.
, and
Zarei
,
S.
,
2004
, “
Underbalanced Drilling as a Tool for Optimized Drilling and Completion Contingency in Fractured Carbonate Reservoirs
,”
The SPE/IADC Underbalanced Technology Conference and Exhibition
,
Houston, TX
,
Oct. 11–12
, SPE-91579-MS.
15.
Johnson
,
L.
,
Murphy
,
P.
, and
Arsanious
,
K.
,
2000
, “
Improvements in Lost-Circulation Control During Drilling Using Shear-Sensitive Fluids
,”
The 2000 Petroleum Society’s Canadian International Petroleum Conference
,
Calgary, Canada
,
June 4–8
, PETSOC-2000-062-P.
16.
Chilingar
,
G.
, and
Vorabutr
,
P.
,
1983
,
Drilling and Drilling Fluids
,
Elsevier
,
Amsterdam
.
17.
Beda
,
G.
, and
Carugo
,
C.
,
2001
, “
Use of Mud Microloss Analysis While Drilling to Improve the Formation Evaluation in Fractured Reservoir
,”
The SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 3
, SPE-71737-MS.
18.
Sanfillippo
,
F.
,
Brignoli
,
M.
,
Santarelli
,
F. J.
, and
Bezzola
,
C.
,
1997
, “
Characterization of Conductive Fractures While Drilling
,”
The 1997 SPE European Formation Damage Conference
,
Hague, The Netherlands
,
June 2–3
, SPE-38177-MS.
19.
Shafer
,
D. M.
,
Loeppke
,
G. E.
,
Glowka
,
D. A.
, and
Scott
,
D. D.
,
1992
, “
An Evaluation of Flowmeters for the Detection of Kick and Lost Circulation During Drilling
,”
The IADC/SPE Drilling Conference
,
Feb. 18–21
, SPE-23935-MS.
20.
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A.
, and
Abdulraheem
,
A.
,
2020
, “
Use of Machine Learning and Data Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
21.
Ahmed
,
A.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2020
, “
Fracture Pressure Prediction Using Surface Drilling Parameters by Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033201
.
22.
Shahab
,
M.
,
2000
, “
Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Artificial Neural Networks
,”
J. Pet. Technol.
,
52
(
9
), pp.
64
73
.
23.
Gamal
,
H.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Haidary
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093004
.
24.
Jeirani
,
Z.
, and
Mohebbi
,
A.
,
2006
, “
Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks
,”
J. Pet. Sci. Eng.
,
50
(
1
), pp.
11
20
.
25.
Moazzeni
,
A. R.
,
Nabaei
,
M.
, and
Jegarluei
,
S. G.
,
2010
, “
Prediction of Lost Circulation Using Virtual Intelligence in One of Iranian Oilfields
,”
The Nigeria Annual International Conference and Exhibition
,
Tinapa—Calabar, Nigeria
,
July 31–Aug. 7
, SPE-136992-MS.
26.
Jahanbakhshi
,
R.
,
Keshavarzi
,
R.
, and
Jalili
,
S.
,
2013
, “
Artificial Neural Network-Based Prediction and Geomechanical Analysis of Lost Circulation in Naturally Fractured Reservoirs: A Case Study
,”
Eur. J. Environ. Civ. Eng.
,
18
(
3
), pp.
320
335
.
27.
Jahanbakhshi
,
R.
, and
Keshavarzi
,
R.
,
2014
, “
Quantitative and Qualitative Analysis of Lost Circulation in Natural and Induced Fractured Formations: The Integration of Operational Conditions and Geomechanical Parameters
,”
Eur. J. Environ. Civ. Eng.
,
19
(
4
), pp.
418
444
.
28.
Toreifi
,
H.
,
Rostami
,
H.
, and
Manshad
,
A. K.
,
2014
, “
New Method for Prediction and Solving the Problem of Drilling Fluid Loss Using Modular Neural Network and Particle Swarm Optimization Algorithm
,”
J. Pet. Explor. Prod. Technol.
,
4
(
4
), pp.
371
379
.
29.
Manshad
,
A.
,
Rostami
,
H.
,
Niknafs
,
H.
, and
Mohammadi
,
A.
,
2017
, Integrated Lost Circulation Prediction in Oil Field Drilling Operation. Research Gate. 978-1-53610-852-1.
30.
Far
,
P. B.
, and
Hosseini
,
P.
,
2017
, “
Estimation of Lost Circulation Amount Occurs During Under Balanced Drilling Using Drilling Data and Neural Network
,”
Egypt. J. Pet.
,
26
(
3
), pp.
627
634
.
31.
Solomon
,
O.
,
Adewale
,
D.
, and
Anyanwu
,
C.
,
2017
, “
Fracture Width Prediction and Loss Prevention Material Sizing in Depleted Formations Using Artificial Intelligence
,”
The SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
July 31–Aug. 2
, SPE-189068-MS.
32.
Abbas
,
A.
,
Al-haideri
,
N.
, and
Bashikh
,
A.
,
2019
, “
Implementing Artificial Neural Networks and Support Vector Machines to Predict Lost Circulation
,”
Egypt. J. Pet.
,
28
(
4
), pp.
339
347
.
33.
Abbas
,
A.
,
Bashikh
,
A.
,
Abbas
,
H.
, and
Mohammed
,
H.
,
2019
, “
Intelligent Decisions to Stop or Mitigate Lost Circulation Based on Machine Learning
,”
Energy
,
183
, pp.
1104
1113
.
34.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abughaban
,
M.
, and
Abdulraheem
,
A.
,
2020
, “
Application of Artificial Intelligence Techniques in Predicting the Lost Circulation Zones Using Drilling Sensors
,”
J. Sens.
,
2020
, pp.
1
18
.
35.
Gupta
,
S.
, and
Gupta
,
A.
,
2019
, “
Dealing With Noise Problem in Machine Learning Data-Sets: A Systematic Review
,”
Procedia Comput. Sci.
,
161
, pp.
466
474
.
36.
Brown
,
R.
,
1959
,
Statistical Forecasting for Inventory Control
,
McGraw-Hill Book Company
,
New York [etc.]
.
37.
Winters
,
P.
,
1960
, “
Forecasting Sales by Exponentially Weighted Moving Averages
,”
Manage. Sci.
,
6
(
3
), pp.
324
342
.
38.
Holt
,
C.
,
2004
, “
Author’s Retrospective on ‘Forecasting Seasonal and Trends by Exponentially Weighted Moving Averages
,”
Int. J. Forecast.
,
20
(
1
), pp.
11
13
.
39.
Batina
,
L.
,
Gierlichs
,
B.
,
Prouff
,
E.
,
Rivain
,
M.
,
Standaert
,
F.
, and
Veyrat-Charvillon
,
N.
,
2010
, “
Mutual Information Analysis: A Comprehensive Study
,”
J. Cryptol.
,
24
(
2
), pp.
269
291
.
40.
Cover
,
T.
, and
Thomas
,
J.
,
1991
,
Elements of Information Theory
,
Wiley
,
New York.
41.
Hearst
,
M. A.
,
1998
, “
Support Vector Machines: A Practical Consequence of Learning Theory
,”
IEEE Intell. Syst.
,
13
(
4
), pp.
18
28
.
42.
Vapnik
,
V.
,
1995
,
The Nature of Statistical Learning Theory
, 2nd ed.,
Springer
,
New York
, pp.
1
314
.
43.
Anifowose
,
F.
, and
Abdulraheem
,
A.
,
2011
, “
Fuzzy Logic Driven and SVM-Driven Hybrid Computational Intelligence Models Applied to Oil and Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
,
3
(
3
), pp.
505
517
.
44.
Hegde
,
C.
, and
Gray
,
K.
,
2017
, “
Use of Machine Learning and Data Analytics to Increase Drilling Efficiency for Nearby Wells
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
327
335
.
45.
Efron
,
B.
,
1982
,
The Jackknife, the Bootstrap and the Other Resampling Plans
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
46.
Wang
,
L.
,
2019
, “
Research and Implementation of Machine Learning Classifier Based on KNN
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
677
, p.
052038
.
47.
Coomans
,
D.
, and
Massart
,
D.
,
1982
, “
Alternative k-Nearest Neighbor Rules in Supervised Pattern Recognition
,”
Anal. Chim. Acta
,
138
, pp.
153
165
.
48.
Stehman
,
S.
,
1997
, “
Selecting and Interpreting Measures of Thematic Classification Accuracy
,”
Remote Sens. Environ.
,
62
(
1
), pp.
77
89
.
49.
Powers
,
D.
,
2011
, “
Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation
,”
J. Mach. Learn. Technol.
, pp.
37
63
.
You do not currently have access to this content.