Abstract

Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain the optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1 cm−2, the integrated system operates in an optimum state and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.

References

1.
Yi
,
B.
,
2000
,
Fuel Cells: An Efficient and Environmentally Friendly Way to Generate Electricity
,
Chemical Industry Press
,
Beijing
.
2.
Zhang
,
X.
,
Chan
,
S.
,
Li
,
G.
,
Ho
,
H.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
A Review of Integration Strategies for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
3
), p.
685
.
3.
Zhang
,
S.
,
Zhang
,
Y.
,
Chen
,
J.
,
Yin
,
C.
, and
Liu
,
X.
,
2018
, “
Design, Fabrication and Performance Evaluation of an Integrated Reformed Methanol Fuel Cell for Portable Use
,”
J. Power Sources
,
389
, p.
37
.
4.
Mert
,
S. O.
,
Dincer
,
I.
, and
Ozcelik
,
Z.
,
2007
, “
Exergoeconomic Analysis of a Vehicular PEM Fuel Cell System
,”
J. Power Sources
,
165
(
1
), p.
244
.
5.
Yalcinoz
,
T.
, and
Alam
,
M. S.
,
2008
, “
Improved Dynamic Performance of Hybrid PEM Fuel Cells and Ultracapacitors for Portable Applications
,”
Int. J. Hydrogen Energy
,
33
(
7
), p.
1932
.
6.
Zhang
,
Z. H.
,
Huang
,
X. H.
,
Jiang
,
J.
, and
Wu
,
B.
,
2006
, “
An Improved Dynamic Model Considering Effects of Temperature and Equivalent Internal Resistance for PEM Fuel Cell Power Modules
,”
J. Power Sources
,
161
(
2
), p.
1062
.
7.
Baschuk
,
J.
,
Rowe
,
A. M.
, and
Li
,
X.
,
2003
, “
Modeling and Simulation of PEM Fuel Cells With CO Poisoning
,”
ASME J. Energy Res. Technol.
,
125
(
2
), pp.
94
100
.
8.
Pinsky
,
R.
,
Sabharwall
,
P.
,
Hartvigsen
,
J.
, and
O’Brien
,
J.
,
2020
, “
Comparative Review of Hydrogen Production Technologies for Nuclear Hybrid Energy Systems
,”
Prog. Nucl. Energy
,
123
, p.
103317
.
9.
Acir
,
A.
, and
Akti
,
S.
,
2019
, “
Investigation of Hydrogen Production Potential of the LASER Inertial Confinement Fusion Fission Energy (LIFE) Engine
,”
Int. J. Hydrogen Energy
,
44
(
45
), pp.
24867
24879
.
10.
Milani
,
D.
,
Kiani
,
A.
, and
McNaughton
,
R.
,
2020
, “
Renewable-Powered Hydrogen Economy From Australia’s Perspective
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
24125
24145
.
11.
Authayanun
,
S.
,
Mamlouk
,
M.
,
Scott
,
K.
, and
Arpornwichanop
,
A.
,
2013
, “
Comparison of High-Temperature and Low-Temperature Polymer Electrolyte Membrane Fuel Cell Systems With Glycerol Reforming Process for Stationary Applications
,”
Appl. Energy
,
109
, pp.
192
201
.
12.
Romero-Pascual
,
E.
, and
Soler
,
J.
,
2014
, “
Modelling of an HTPEM-Based Micro-Combined Heat and Power Fuel Cell System With Methanol
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
4053
4059
.
13.
Lee
,
H.
,
Jung
,
I.
,
Roh
,
G.
,
Na
,
Y.
, and
Kang
,
H.
,
2020
, “
Comparative Analysis of On-Board Methane and Methanol Reforming Systems Combined With HT-PEM Fuel Cell and CO2 Capture/Liquefaction System for Hydrogen Fueled Ship Application
,”
Energies
,
13
(
1
), p.
224
.
14.
Wu
,
W.
,
Liew
,
K.
,
Abbas
,
S.
,
Raza
,
M.
,
Hwang
,
J.
,
Yang
,
S.
, et al
,
2020
, “
Exergy-Based Modular Design of an On-Board MeOH-to-H2 Processor for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19880
19890
.
15.
Xing
,
S.
,
Zhao
,
C.
,
Ban
,
S.
,
Liu
,
Y.
, and
Wang
,
H.
,
2020
, “
Thermodynamic Performance Analysis of the Influence of Multi-Factor Coupling on the Methanol Steam Reforming Reaction
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7015
7024
.
16.
Wang
,
Y.
,
Wu
,
Q.
,
Mei
,
D.
, and
Wang
,
Y.
,
2020
, “
Development of Highly Efficient Methanol Steam Reforming System for Hydrogen Production and Supply for a Low Temperature Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
25317
25327
.
17.
Perng
,
S.
, and
Wu
,
H.
,
2019
, “
Effect of Sinusoidal-Wavy Channel of Reformer on Power of Proton Exchange Membrane Fuel Cell
,”
Appl. Therm. Eng.
,
162
, p.
114269
.
18.
Yan
,
P.
,
Tian
,
P.
,
Cai
,
C.
,
Zhou
,
S.
,
Yu
,
X.
,
Zhao
,
S.
,
Yu
,
X.
, et al
,
2020
, “
Antioxidative and Stable PdZn/Zno/Al2O3 Catalyst Coatings Concerning Methanol Steam Reforming for Fuel Cell-Powered Vehicles
,”
Appl. Energy
,
268
, pp.
115043
.
19.
Martin
,
S.
, and
Wörner
,
A.
,
2011
, “
On-Board Reforming of Biodiesel and Bioethanol for High Temperature PEM Fuel Cells: Comparison of Autothermal Reforming and Steam Reforming
,”
J. Power Sources
,
196
(
6
), pp.
3163
3171
.
20.
Zhang
,
T.
,
Choi
,
B.
, and
Kim
,
Y.
,
2020
, “
Numerical and Experimental Study on Hydrogen Production Via Dimethyl Ether Steam Reforming
,”
Int. J. Hydrogen Energy
,
45
(
20
), pp.
11438
11448
.
21.
Guan
,
T.
,
Chutichai
,
B.
,
Alvfors
,
P.
, and
Arpornwichanop
,
A.
,
2015
, “
Biomass-Fueled PEMFC Systems: Evaluation of Two Conversion Paths Relevant for Different Raw Materials
,”
Energy Convers. Manage.
,
106
, pp.
1183
1191
.
22.
Salemme
,
L.
,
Menna
,
L.
, and
Simeone
,
M.
,
2013
, “
Calculation of the Energy Efficiency of Fuel Processor—PEM (Proton Exchange Membrane) Fuel Cell Systems From Fuel Elementar Composition and Heating Value
,”
Energy
,
57
, pp.
368
374
.
23.
Obara
,
S.
, and
Tanno
,
I.
,
2009
, “
Installation Plan of a Fuel Cell Microgrid System Optimized by Maximizing Power Generation Efficiency
,”
J. Energy Res. Technol.
,
131
(
4
), p.
042601
.
24.
Boettner
,
D.
,
Paganelli
,
G.
,
Guezennec
,
Y.
,
Rizzoni
,
G.
, and
Moran
,
M.
,
2002
, “
Proton Exchange Membrane Fuel Cell System Model for Automotive Vehicle Simulation and Control
,”
ASME J. Energy Res. Technol.
,
124
(
1
), pp.
20
27
.
25.
Zhang
,
X.
,
Lin
,
Q.
,
Liu
,
H.
,
Chen
,
X.
,
Su
,
S.
, and
Ni
,
M.
,
2019
, “
Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas
,”
Entropy
,
21
(
85
), p.
1
.
26.
Zhang
,
X.
,
Chen
,
X.
,
Lin
,
B.
, and
Chen
,
J.
,
2011
, “
Maximum Equivalent Efficiency and Power Output of a PEM Fuel Cell/Refrigeration Cycle Hybrid System
,”
Int. J. Hydrogen Energy
,
36
(
3
), pp.
2190
2196
.
27.
Luo
,
L.
,
Jian
,
Q.
,
Huang
,
B.
,
Huang
,
Z.
,
Zhao
,
J.
, and
Cao
,
S.
,
2019
, “
Experimental Study on Temperature Characteristics of an Air-Cooled Proton Exchange Membrane Fuel Cell Stack
,”
Renew. Energy
,
143
, pp.
1067
1078
.
28.
Wang
,
R.
,
Zhang
,
G.
,
Hou
,
Z.
,
Wang
,
K.
,
Zhao
,
Y.
, and
Jiao
,
K.
,
2019
, “
Comfort Index Evaluating the Water and Thermal Characteristics of Proton Exchange Membrane Fuel Cell
,”
Energy Convers. Manage.
,
185
, pp.
496
507
.
29.
Eduardo
,
I.
,
Esperanza
,
M.
,
Marisa
,
P.
, and
Eduardo
,
N.
,
2020
, “
Process Intensification Through the Use of Multifunctional Reactors for PEMFC Grade Hydrogen Production: Process Design and Simulation
,”
Chem. Eng. Process.
,
147
, p.
107711
.
30.
Tanrioven
,
M.
, and
Alam
,
M.
,
2006
, “
Impact of Load Management on Reliability Assessment of Grid Independent PEM Fuel Cell Power Plants
,”
J. Power Sources
,
157
(
1
), pp.
401
410
.
31.
Jo
,
A.
,
Oh
,
K.
,
Lee
,
J.
,
Han
,
D.
,
Kim
,
D.
,
Kim
,
J.
,
Kim
,
B.
, et al
,
2017
, “
Modeling and Analysis of a 5kWe HT-PEMFC System for Residential Heat and Power Generation
,”
Int. J. Hydrogen Energy
,
42
(
3
), pp.
1698
1714
.
32.
Rodatz
,
P.
,
Paganelli
,
G.
,
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2005
, “
Optimal Power Management of an Experimental Fuel Cell/Supercapacitor-Powered Hybrid Vehicle
,”
Control Eng. Pract.
,
13
(
1
), pp.
41
53
.
33.
Marefati
,
M.
, and
Mehrpooya
,
M.
,
2019
, “
Introducing a Hybrid Photovoltaic Solar, Proton Exchange Membrane Fuel Cell and Thermoelectric Device System
,”
Sustain. Energy Technol. Assess.
,
36
, p.
100550
.
34.
Zhang
,
X.
,
Pan
,
Y.
,
Cai
,
L.
,
Zhao
,
Y.
, and
Chen
,
J.
,
2017
, “
Using Electrochemical Cycles to Efficiently Exploit the Waste Heat From a Proton Exchange Membrane Fuel Cell
,”
Energy Convers. Manage.
,
144
, pp.
217
223
.
35.
Long
,
R.
,
Li
,
B.
,
Liu
,
Z.
, and
Liu
,
W.
,
2015
, “
A Hybrid System Using a Regenerative Electrochemical Cycle to Harvest Waste Heat From the Proton Exchange Membrane Fuel Cell
,”
Energy
,
93
, pp.
2079
2086
.
36.
Strahl
,
S.
, and
Costa-Castelló
,
R.
,
2017
, “
Temperature Control of Open-Cathode PEM Fuel Cells
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
11088
11093
.
37.
Zhang
,
X.
,
Ni
,
M.
,
Wang
,
J.
,
Yang
,
L.
,
Mao
,
X.
,
Su
,
S.
,
Yang
,
Z.
, and
Chen
,
J.
,
2020
, “
Configuration Design and Parametric Optimum Selection of a Self-Supporting PEMFC
,”
Energy Convers. Manage.
,
225
, p.
113391
.
38.
Pashchenko
,
D.
, and
Makarov
,
I.
,
2021
, “
Carbon Deposition in Steam Methane Reforming Over a Ni-Based Catalyst: Experimental and Thermodynamic Analysis
,”
Energy
,
222
, p.
11993
.
39.
Poling
,
B.
,
Prausnitz
,
J.
, and
O’Connell
,
J.
,
2004
,
The Properties of Gases and Liquids
, 5th ed.,
The McGraw-Hill Companies
,
New York
.
40.
Zhao
,
Y.
,
Sadhukhan
,
J.
,
Lanzini
,
A.
,
Brandon
,
N.
, and
Shah
,
N.
,
2011
, “
Optimal Integration Strategies for a Syngas Fuelled SOFC and Gas Turbine Hybrid
,”
J. Power Sources
,
196
(
22
), pp.
9516
9527
.
41.
Ay
,
M.
,
Midilli
,
A.
, and
Dincer
,
I.
,
2006
, “
Exergetic Performance Analysis of a PEM Fuel Cell
,”
Int. J. Energy Res.
,
30
(
5
), pp.
307
321
.
42.
Rowe
,
A.
, and
Li
,
X.
,
2001
, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
102
(
1–2
), pp.
82
96
.
43.
Shin
,
Y.
,
Park
,
W.
,
Chang
,
J.
, and
Park
,
J.
,
2007
, “
Evaluation of the High Temperature Electrolysis of Steam to Produce Hydrogen
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1486
1491
.
44.
Zhang
,
Y.
,
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2007
, “
Numerical Studies on an Air-Breathing Proton Exchange Membrane (PEM) Fuel Cell Stack
,”
J. Power Sources
,
173
(
1
), pp.
264
276
.
45.
Salemme
,
L.
,
Menna
,
L.
,
Simeone
,
M.
, and
Volpicelli
,
G.
,
2010
, “
Energy Efficiency of Membrane-Based Fuel Processors—PEM Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3712
3720
.
46.
Du
,
S.
,
2021
, “
Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications
,”
Engineering
,
7
(
1
), pp.
33
49
.
47.
Pu
,
X.
,
Duan
,
Y.
,
Li
,
J.
,
Ru
,
C.
, and
Zhao
,
C.
,
2021
, “
Understanding of Hydrocarbon Ionomers in Catalyst Layers for Enhancing the Performance and Durability of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
493
, p.
229671
.
48.
Xie
,
Z.
,
Tian
,
L.
,
Zhang
,
W.
,
Ma
,
Q.
,
Xing
,
L.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2021
, “
Enhanced Low-Humidity Performance of Proton Exchange Membrane Fuel Cell by Incorporating Phosphoric Acid-Loaded Covalent Organic Framework in Anode Catalyst Layer
,”
Int. J. Hydrogen Energy
,
46
(
18
), p.
10903
.
49.
Huang
,
Y.
,
Lin
,
Q.
,
Liu
,
H.
,
Ni
,
M.
, and
Zhang
,
X.
,
2017
, “
Evaluation of the Waste Heat and Residual Fuel From the Solid Oxide Fuel Cell and System Power Optimization
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1166
1173
.
50.
Di Battista
,
D.
,
Fatigati
,
F.
,
Carapellucci
,
R.
, and
Cipollone
,
R.
,
2019
, “
Inverted Brayton Cycle for Waste Heat Recovery in Reciprocating Internal Combustion Engines
,”
Appl. Energy
,
253
, p.
113565
.
51.
Zhu
,
D.
, and
Zheng
,
X.
,
2019
, “
Potential for Energy and Emissions of Asymmetric Twin-Scroll Turbocharged Diesel Engines Combining Inverse Brayton Cycle System
,”
Energy
,
179
, pp.
581
592
.
52.
Deng
,
B.
,
Tang
,
Q.
, and
Li
,
M.
,
2017
, “
Study on the Steam-Assisted Brayton Air Cycle for Exhaust Heat Recovery of Internal Combustion Engine
,”
Appl. Therm. Eng.
,
125
, pp.
714
726
.
53.
Yan
,
Z.
, and
Chen
,
J.
,
1989
, “
An Optimal Endoreversible Three-Heat-Source Refrigerator
,”
J. Appl. Phys.
,
65
(
1
), pp.
1
4
.
54.
Chen
,
J.
,
1994
, “
Performance of Absorption Refrigeration Cycle at Maximum Cooling Rate
,”
Cryogenics
,
34
(
12
), pp.
997
1000
.
55.
Chen
,
J.
, and
Schouten
,
J.
,
1998
, “
Optimum Performance Characteristics of an Irreversible Absorption Refrigeration System
,”
Energy Convers. Manage.
,
39
(
10
), pp.
999–
1007
.
56.
Keune
,
G.
,
Wouagfack
,
P.
, and
Tchinda
,
R.
,
2020
, “
Local Stability Analysis of an Irreversible Absorption Refrigerator Powered by a Wood Boiler
,”
Int. J. Refrig.
,
115
, pp.
83
95
.
57.
Wang
,
Q.
,
Liu
,
Y.
,
Wang
,
S.
,
Zhang
,
S.
, and
Chen
,
G.
,
2020
, “
Experiments on the Performance of Bubble Pumps With R134a/R23-DMF Solutions for Diffusion Absorption Refrigerator
,”
Appl. Therm. Eng.
,
177
, p.
115481
.
58.
Kim
,
J.
,
Ziegler
,
F.
, and
Lee
,
H.
,
2002
, “
Simulation of the Compressor-Assisted Triple-Effect H2O/LiBr Absorption Cooling Cycles
,”
Appl. Therm. Eng.
,
22
(
3
), pp.
295
308
.
59.
Jeong
,
J.
,
Saito
,
K.
, and
Kawai
,
S.
,
2011
, “
Static Characteristics and Efficient Control of Compression- and Absorption-Type Hybrid Air Conditioning System
,”
Int. J. Refrig.
,
34
(
3
), pp.
674
685
.
60.
Manzela
,
A.
,
Hanriot
,
S.
,
Cabezas-Gómez
,
L.
,
Maia
,
C.
, and
Sodré
,
J.
,
2012
, “
An Experimental Comparison Between LPG and Engine Exhaust Gas as Energy Source for an Absorption Refrigeration System
,”
Int. J. Energy Res.
,
36
(
6
), pp.
820
828
.
You do not currently have access to this content.