Abstract

The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model turbine rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison with other three models. However, in the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.

References

1.
IEA
,
World Energy Outlook 2019 Report
.
2.
Dolores Esteban
,
M.
,
López-Gutiérrez
,
J. S.
,
Negro
,
V.
,
Matutano
,
C.
,
García-Flores
,
F. M.
, and
Millán
,
M. Á.
,
2015
, “
Offshore Wind Foundation Design: Some Key Issues
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051211
.
3.
Díaz
,
H.
, and
Soares
,
C. G.
,
2020
, “
Review of the Current Status, Technology and Future Trends of Offshore Wind Farms
,”
Ocean Eng.
,
209
, p.
107381
.
4.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
.
5.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
6.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1351
1371
.
7.
Treuren
,
K. W. V.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
8.
Jain
,
S.
, and
Saha
,
U. K.
,
2019
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
.
9.
Jamal
,
M. A.
, and
Shah
,
O. R.
,
2020
, “
Performance Evaluation of a 1 kW Variable Pitch-Straight Blade Vertical Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121304
.
10.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
11.
Mohammed
,
A. A.
,
Sahin
,
A. Z.
, and
Ouakad
,
H. M.
,
2019
, “
Numerical Investigation of a Vertical Axis Wind Turbine Performance Characterization Using New Variable Pitch Control Scheme
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031302
.
12.
Ohya
,
Y.
, and
Karasudani
,
T.
,
2010
, “
A Shrouded Wind Turbine Generating High Output Power With Wind-Lens Technology
,”
Energies
,
3
(
4
), pp.
634
649
.
13.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
14.
Zhao
,
P.
,
Xu
,
W.
,
Zhang
,
S.
,
Wang
,
J.
, and
Dai
,
Y.
,
2020
, “
Technical Feasibility Assessment of a Standalone Photovoltaic/Wind/Adiabatic Compressed Air Energy Storage Based Hybrid Energy Supply System for Rural Mobile Base Station
,”
Energy Conver. Manage.
,
206
, p.
112486
.
15.
Karthikeyan
,
N.
,
Murugavel
,
K. K.
,
Kumar
,
S. A.
, and
Kumar
,
R.
,
2015
, “
Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
801
822
.
16.
Tangler
,
W.
, and
Rooij
,
R. V.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
488
496
.
17.
Giguere
,
P.
, and
Selig
,
M. S.
,
1997
, “
Low Reynolds Number Airfoils for Small Horizontal Axis Wind Turbines
,”
Wind Eng.
,
21
(
6
), pp.
367
380
. http://www.jstor.org/stable/43749658
18.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Aerodynamic Effects of Leading-Edge Tape on Aerofoils at Low Reynolds Numbers
,”
Wind Energy
,
2
(
3
), pp.
125
136
.
19.
Hansen
,
M. O. L.
, and
Madsen
,
H. A.
, “
Review Paper on Wind Turbine Aerodynamics
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
114001
.
20.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed.,
Wiley Publication
,
UK
.
21.
Song
,
Q.
, and
Lubitz
,
W. D.
,
2014
, “
Design and Testing of a New Small Wind Turbine Blade
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034502
.
22.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
23.
Akour
,
S. N.
,
Al-Heymari
,
M.
,
Ahmed
,
T.
, and
Khalil
,
K. A.
,
2018
, “
Experimental and Theoretical Investigation of Micro Wind Turbine for Low Wind Speed Regions
,”
Renew. Energy
,
116
(
A
), pp.
215
223
.
24.
Li
,
B.
,
Zhou
,
D. L.
,
Wang
,
Y.
,
Shuai
,
Y.
,
Liu
,
Q. Z.
, and
Cai
,
W. H.
,
2020
, “
The Design of a Small Lab-Scale Wind Turbine Model With High Performance Similarity to its Utility-Scale Prototype
,”
Renew. Energy
,
149
, pp.
435
444
.
25.
Singh
,
R. K.
, and
Ahmed
,
M. R.
,
2013
, “
Blade Design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications
,”
Renew. Energy
,
50
, pp.
812
819
.
26.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Experimental Study on Small Scale Horizontal Axis Wind Turbine of Analytically-Optimized Blade With Linearized Chord Twist Angle Profile
,”
Energy
,
216
, p.
119304
.
27.
Sheldahi
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,”
SAND80-2114
,
Mar. 1981
.
28.
Kishore
,
R. A.
, and
Priya
,
S.
,
2013
, “
Design and Experimental Verification of a High Efficiency Small Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
,
118
, pp.
12
19
.
29.
Rocha
,
P. A. C.
,
Araujo
,
J. W. C.
,
Lima
,
R. J. P.
,
Silva
,
M. E. V.
,
Albiero
,
D.
,
Andrade
,
C. F.
, and
Carneiro
,
F. O. M.
,
2018
, “
The Effects of Blade Pitch Angle on the Performance of Small-Scale Wind Turbine in Urban Environments
,”
Energy
,
148
, pp.
169
178
.
30.
Vardar
,
A.
, and
Alibas
,
I.
,
2008
, “
Research on Wind Turbine Rotor Models Using NACA Profiles
,”
Renew. Energy
,
33
(
7
), pp.
1721
1732
.
31.
McTavish
,
S.
,
Feszty
,
D.
, and
Nitzsche
,
F.
,
2013
, “
Evaluating Reynolds Number Effects in Small-Scale Wind Turbine Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
81
90
.
32.
Siram
,
O.
, and
Sahoo
,
N.
,
2019
, “
Near Wake Regime Study on Wind Turbine Blade Tip Vortex
,”
ASME 2019 Gas Turbine India Conference
,
Chennai, Tamil Nadu, India
,
Dec. 5–6, Paper No. GTINDIA2019-2493
.
33.
Hancock
,
P. E.
,
Zhang
,
S.
,
Pascheke
,
F.
, and
Hayden
,
P.
,
2014
, “
Wind Tunnel Simulation of a Wind Turbine Wake in Neutral, Stable and Unstable Wind Flow
,”
J. Phys. Conf. Ser.
,
555
, p.
012047
.
You do not currently have access to this content.