Abstract

Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in situ stresses, and design of hydraulic fracturing. One of these properties is Poisson’s ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming, and does not provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration (ROP), weight on bit (WOB), and torque. Three machine-learning methods were utilized: support vector machine (SVM), functional network (FN), and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale, and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed. The three machine-learning tools provided good estimations; however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.

References

1.
Fjar
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
, Vol.
53
,
Elsevier Science
,
Amsterdam
.
2.
Hammah
,
R.
,
Curran
,
J.
, and
Yacoub
,
T.
,
2006
, “
The Influence of Young's Modulus on Stress Modelling Results
,”
Golden Rocks 2006, 41st U.S. Symposium on Rock Mechanics
,
Golden, CO
,
June 17–21
, p.
2
.
3.
Kumar
,
J.
,
1976
, “
The Effect of Poisson’s Ratio on Rock Properties
,”
SPE Annual Fall Technical Conference and Exhibition of the Society
,
New Orleans, LA
,
Oct. 3–6
, p.
12
.
4.
Labudovic
,
V.
,
1984
, “
The Effect of Poisson’s Ratio on Fracture Height
,”
J. Pet. Technol.
,
36
(
2
), pp.
287
290
.
5.
Nes
,
O.-M.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2005
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 23–25
, p.
7
.
6.
Barree
,
R. D.
,
Gilbert
,
J. V.
, and
Conway
,
M.
,
2009
, “
Stress and Rock Property Profiling for Unconventional Reservoir Stimulation
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Jan. 19–21
, p.
18
.
7.
Christaras
,
B.
,
Auger
,
F.
, and
Mosse
,
E.
,
1994
, “
Determination of the Moduli of Elasticity of Rocks. Comparison of the Ultrasonic Velocity and Mechanical Resonance Frequency Methods with Direct Static Methods
,”
Mater. Struct.
,
27
(
4
), pp.
222
228
.
8.
Wang
,
Q.
,
Ji
,
S.
,
Sun
,
S.
, and
Marcotte
,
D.
,
2009
, “
Correlations Between Compressional and Shear Wave Velocities and Corresponding Poisson’s Ratios for Some Common Rocks and Sulfide Ores
,”
Tectonophysics
,
469
(
1
), pp.
61
72
.
9.
Feng
,
C.
,
Wang
,
Z.
,
Deng
,
X.
,
Fu
,
J.
,
Shi
,
Y.
,
Zhang
,
H.
, and
Mao
,
Z.
,
2019
, “
A New Empirical Method Based on Piecewise Linear Model to Predict Static Poisson’s Ratio via Well Logs
,”
J. Pet. Sci. Eng.
,
175
(
1
), pp.
1
8
.
10.
Ahmadi
,
M. A.
,
Pournik
,
M.
,
Shadizadeh
,
S. R.
,
Ali
,
M.
, and
Reza
,
S.
,
2015
, “
Toward Connectionist Model for Predicting Bubble Point Pressure of Crude Oils: Application of Artificial Intelligence
,”
Petroleum
,
1
(
4
), pp.
307
317
.
11.
Alakbari
,
F. S.
,
Elkatatny
,
S.
, and
Baarimah
,
S. O.
,
2016
, “
Prediction of Bubble Point Pressure Using Artificial Intelligence AI Techniques
,”
SPE Middle East Artificial Lift Conference and Exhibition
,
Manama, Kingdom of Bahrain
,
Nov. 30–Dec. 1
, p.
9
.
12.
Wood
,
D. A.
, and
Choubineh
,
A.
,
2018
, “
Transparent Open-Box Learning Network and Artificial Neural Network Predictions of Bubble-Point Pressure Compared
,”
Petroleum
,
6
(
4
), pp.
375
384
.
13.
Khaksar Manshad
,
A.
,
Rostami
,
H.
,
Moein Hosseini
,
S.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
14.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
,
4
(
2
), pp.
178
186
.
15.
Mahdiani
,
M. R.
, and
Norouzi
,
M.
,
2018
, “
A New Heuristic Model for Estimating the Oil Formation Volume Factor
,”
Petroleum
,
4
(
3
), pp.
300
308
.
16.
Oloso
,
M. A.
,
Hassan
,
M. G.
,
Bader-El-Den
,
M. B.
, and
Buick
,
J. M.
,
2017
, “
Hybrid Functional Networks for Oil Reservoir PVT Characterisation
,”
Expert Syst. Appl.
,
87
(
1
), pp.
363
369
.
17.
Elkatatny
,
S.
,
Moussa
,
T.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2018
, “
A Self-Adaptive Artificial Intelligence Technique to Predict Oil Pressure Volume Temperature Properties
,”
Energies
,
11
(
12
), p.
3490
.
18.
Al-AbdulJabbar
,
A.
,
Al-Azani
,
K.
, and
Elkatatny
,
S.
,
2020
, “
Estimation of Reservoir Porosity From Drilling Parameters Using Artificial Neural Networks
,”
Petrophys.—SPWLA J. Form. Eval. Reservoir Descr.
,
61
(
3
), pp.
318
330
.
19.
Zerrouki
,
A. A.
,
Aïfa
,
T.
, and
Baddari
,
K.
,
2014
, “
Prediction of Natural Fracture Porosity From Well Log Data by Means of Fuzzy Ranking and an Artificial Neural Network in Hassi Messaoud Oil Field, Algeria
,”
J. Pet. Sci. Eng.
,
115
(
1
), pp.
78
89
.
20.
Wood
,
D. A.
,
2020
, “
Predicting Porosity, Permeability and Water Saturation Applying an Optimized Nearest-Neighbour, Machine-Learning and Data-Mining Network of Well-Log Data
,”
J. Pet. Sci. Eng.
,
184
(
1
), p.
106587
.
21.
Al Khalifah
,
H.
,
Glover
,
P. W. J.
, and
Lorinczi
,
P.
,
2020
, “
Permeability Prediction and Diagenesis in Tight Carbonates Using Machine Learning Techniques
,”
Mar. Pet. Geol.
,
112
(
1
), p.
104096
.
22.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
23.
Shokooh Saljooghi
,
B.
, and
Hezarkhani
,
A.
,
2015
, “
A New Approach to Improve Permeability Prediction of Petroleum Reservoirs Using Neural Network Adaptive Wavelet (Wavenet)
,”
J. Pet. Sci. Eng.
,
133
(
1
), pp.
851
861
.
24.
Ahmed
,
A.
,
Ali
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
New Artificial Neural Networks Model for Predicting Rate of Penetration in Deep Shale Formation
,”
Sustainability
,
11
(
22
), p.
6527
.
25.
Al-abduljabbar
,
A.
,
Elkatatny
,
S.
,
Abdulhamid Mahmoud
,
A.
,
Moussa
,
T.
,
Al-shehri
,
D.
,
Abughaban
,
M.
, and
Al-yami
,
A.
,
2020
, “
Prediction of the Rate of Penetration While Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique
,”
Sustainability
,
12
(
4
), p.
1376
.
26.
Elkatatny
,
S.
,
2020
, “
Real-Time Prediction of Rate of Penetration in S-Shape Well Profile Using Artificial Intelligence Models
,”
Sensors
,
20
(
12
), p.
3506
.
27.
Hassan
,
A.
,
Al-Majed
,
A.
,
Mahmoud
,
M.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
Improved Predictions in Oil Operations Using Artificial Intelligent Techniques
,”
SPE Middle East Oil and Gas Show Conference
,
Manama, Bahrain
,
Mar. 18–21
, p.
9
.
28.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Model for Pore Pressure Prediction While Drilling Using Artificial Neural Networks
,”
Arabian J. Sci. Eng.
,
44
(
6
), pp.
6079
6088
.
29.
Abdelgawad
,
K. Z.
,
Elzenary
,
M.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
, and
Patil
,
S.
,
2019
, “
New Approach to Evaluate the Equivalent Circulating Density (ECD) Using Artificial Intelligence Techniques
,”
J. Pet. Explor. Prod. Technol.
,
9
(
2
), pp.
1569
1578
.
30.
Elzenary
,
M.
,
Elkatatny
,
S.
,
Abdelgawad
,
K. Z.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
, and
Al-Shehri
,
D.
,
2018
, “
New Technology to Evaluate Equivalent Circulating Density While Drilling Using Artificial Intelligence
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
14
.
31.
Bageri
,
B. S.
,
Mahmoud
,
M.
,
Elkatatny
,
S.
,
Patil
,
S.
,
Benaafi
,
M.
, and
Mohamed
,
A.
,
2019
, “
Effect of Drill Cuttings Mechanical Properties on Filter Cake Properties and Mud-Filtrate Invasion
,”
53rd U.S. Rock Mechanics/Geomechanics Symposium
,
New York
,
June 23–26
, p.
6
.
32.
Gowida
,
A.
,
Elkatatny
,
S.
,
Abdelgawad
,
K.
, and
Gajbhiye
,
R.
,
2020
, “
Newly Developed Correlations to Predict the Rheological Parameters of High-Bentonite Drilling Fluid Using Neural Networks
,”
Sensors (Basel)
,
20
(
10
), p.
2787
.
33.
Elkatatny
,
S.
,
2019
, “
Real-Time Prediction of the Rheological Properties of Water-Based Drill-In Fluid Using Artificial Neural Networks
,”
Sustainability
,
11
(
18
), p.
5008
.
34.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
35.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
36.
Elkatatny
,
S.
,
2018
, “
Application of Artificial Intelligence Techniques to Estimate the Static Poisson’s Ratio Based on Wireline Log Data
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072905
.
37.
Alloush
,
R. M.
,
Elkatatny
,
S.
,
Mahmoud
,
M. A.
,
Moussa
,
T. M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
Estimation of Geomechanical Failure Parameters From Well Logs Using Artificial Intelligence Techniques
,”
SPE Kuwait Oil & Gas Show and Conference
,
Kuwait City, Kuwait
,
Oct. 15–18
, p.
13
.
38.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Technique to Develop Rock Strength Correlation Using Artificial Intelligence Tools
,”
SPE Reservoir Characterisation and Simulation Conference and Exhibition
,
Abu Dhabi, UAE
,
May 8–10
, p.
14
.
39.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Abdulraheem
,
A.
,
2017
, “
A New Approach to Predict Failure Parameters of Carbonate Rocks Using Artificial Intelligence Tools
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
, p.
13
.
40.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
, and
Fahd
,
K.
,
2016
, “
A New Artificial Intelligence Based Empirical Correlation to Predict Sonic Travel Time
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
,
Nov. 14–16
, p.
19
.
41.
Abdulraheem
,
A.
,
Ahmed
,
M.
,
Vantala
,
A.
, and
Parvez
,
T.
,
2009
, “
Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques
,”
SPE Saudi Arabia Section Technical Symposium
,
Al-Khobar, Saudi Arabia
,
May 9–11
, p.
11
.
42.
Al-anazi
,
B. D.
,
Algarni
,
M. T.
,
Tale
,
M.
, and
Almushiqeh
,
I.
,
2011
, “
Prediction of Poisson’s Ratio and Young’s Modulus for Hydrocarbon Reservoirs Using Alternating Conditional Expectation Algorithm
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Sept. 25–28
, p.
9
.
43.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Abdelwahab
,
A. Z.
, and
Woldeamanuel
,
M.
,
2017
, “
Estimation of Rock Mechanical Parameters Using Artificial Intelligence Tools
,”
51st U.S. Rock Mechechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 25–28
, p.
11
.
44.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem Abdelwahab
,
Z. A.
,
Woldeamanuel
,
M.
, and
Mohamed
,
I. M.
,
2017
, “
An Artificial Intelligent Approach to Predict Static Poisson’s Ratio
,”
51st U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 25–28
, p.
7
.
45.
Abdulraheem
,
A.
,
2019
, “
Prediction of Poisson’s Ratio for Carbonate Rocks Using ANN and Fuzzy Logic Type-2 Approaches
,”
International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
, p.
9
.
46.
Gowida
,
A.
,
Moussa
,
T.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2019
, “
A Hybrid Artificial Intelligence Model to Predict the Elastic Behavior of Sandstone Rocks
,”
Sustainability
,
11
(
19
), p.
5283
.
47.
Tariq
,
Z.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
, and
Ahmed
,
A.
,
2018
, “
A Rigorous Data-Driven Approach to Predict Poisson’s Ratio of Carbonate Rocks Using a Functional Network
,”
Petrophysics
,
59
(
6
), pp.
761
777
.
48.
Gowida
,
A.
, and
Elkatatny
,
S.
,
2020
, “
Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal Drilling in Carbonate Rocks Using Neural Networks
,”
Petrophysics
,
61
(
5
), pp.
482
494
.
49.
Gowida
,
A.
,
Elkatatny
,
S.
,
Al-afnan
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling
,”
Sustainability
,
12
(
2
), p.
686
.
50.
Jorden
,
J. R.
, and
Shirley
,
O. J.
,
1966
, “
Application of Drilling Performance Data to Overpressure Detection
,”
J. Pet. Technol.
,
18
(
11
), pp.
1387
1394
.
51.
Rehm
,
B.
, and
McClendon
,
R.
,
1971
, “
Measurement of Formation Pressure From Drilling Data
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
,
New Orleans, LA
,
Oct. 3–6
, p.
11
.
52.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
1
), pp.
273
297
.
53.
Boser
,
B. E.
,
Guyon
,
I. M.
, and
Vapnik
,
V. N.
,
1992
, “
A Training Algorithm for Optimal Margin Classifiers
,”
Proceedings of the Fifth Annual Workshop on Computational Learning Theory—COLT ’92
,
ACM Press
,
New York
, pp.
144
152
.
54.
Aizerman
,
M. A.
,
Braverman
,
E. M.
, and
Rozonoer
,
L. I.
,
1964
, “
Theoretical Foundations of the Potential Function Method in Pattern Recognition
,”
Autom. Remote Control
,
25
(
1
), pp.
821
837
.
55.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
,
Patil
,
S.
,
Mousa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2018
, “
Real Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
13
.
56.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulazeez
,
A.
, and
Mohamed
,
I. M.
,
2016
, “
Application of Artificial Intelligent Techniques to Determine Sonic Time From Well Logs
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June 26–29
, p.
11
.
57.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial Intelligent Technique
,”
Arabian J. Sci. Eng.
,
43
(
5
), pp.
2491
2500
.
58.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abdulraheem
,
A.
, and
Abouelresh
,
M.
,
2020
, “
Estimation of the Total Organic Carbon Using Functional Neural Networks and Support Vector Machine
,”
International Petroleum Technology Conference
,
Dhahran, Kingdom of Saudi Arabia
,
Jan. 13–15
.
59.
Aibing
,
L.
,
Guang
,
Z.
,
Peiliang
,
H.
,
Zhengyu
,
L.
,
Yanbo
,
Y.
, and
Ping
,
Z.
,
2012
, “
Prediction of Rockburst Classification by SVM Method
,”
ISRM Regional Symposium—7th Asian Rock Mechanics Symposium
,
Seoul, South Korea
,
Oct. 15–19
, p.
7
.
60.
Heinze
,
L.
, and
Al-Baiyat
,
I. A.
,
2012
, “
Implementing Artificial Neural Networks and Support Vector Machines in Stuck Pipe Prediction
,”
SPE Kuwait International Petroleum Conference and Exhibition
,
Kuwait City, Kuwait
,
Dec. 10–12
, p.
13
.
61.
Li
,
J.
,
Castagna
,
J.
,
Li
,
D.
, and
Bian
,
X.
,
2004
, “
Reservoir Prediction Via SVM Pattern Recognition
,”
2004 SEG Annual Meeting
,
Denver, CO
,
Oct. 10–15
, p.
4
.
62.
Olatunji
,
O. O.
, and
Micheal
,
O.
,
2017
, “
Prediction of Sand Production From Oil and Gas Reservoirs in the Niger Delta Using Support Vector Machines SVMs: A Binary Classification Approach
,”
SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
July 31–Aug. 2
, p.
10
.
63.
Zhao
,
B.
,
Zhou
,
H.
, and
Hilterman
,
F.
,
2005
, “
Fizz and Gas Separation With SVM Classification
,”
2005 SEG Annual Meeting
,
Houston, TX
,
Nov. 6–11
, p.
5
.
64.
Castillo
,
E.
,
1998
, “
Functional Networks
,”
Neural Process. Lett.
,
7
(
3
), pp.
151
159
.
65.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
R. E.
,
1999
,
Functional Networks With Applications
,
Springer US
,
Boston, MA
.
66.
Castillo
,
E.
,
Gutiérrez
,
J. M.
,
Hadi
,
A. S.
, and
Lacruz
,
B.
,
2001
, “
Some Applications of Functional Networks in Statistics and Engineering
,”
Technometrics
,
43
(
1
), pp.
10
24
.
67.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
E.
,
2000
, “
Functional Networks: A New Network-Based Methodology
,”
Comput. Civ. Infrastruct. Eng.
,
15
(
2
), pp.
90
106
.
68.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
New Approach to Predict Fracture Pressure Using Functional Networks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
12
.
69.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Shehri
,
D.
,
Khan
,
M. R.
, and
Janjua
,
A. N.
,
2018
, “
An Intelligent Solution To Forecast Pressure Drop in a Vertical Well Having Multiphase Flow Using Functional Network Technique
,”
PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition
,
Islamabad, Pakistan
,
Dec. 10–12
, p.
10
.
70.
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
, and
Al-Shehri
,
D. A.
,
2018
, “
On Utilizing Functional Network to Develop Mathematical Model for Poisson’s Ratio Determination
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
,
Seattle, WA
,
June 17–20
, p.
6
.
71.
Tariq
,
Z.
,
2018
, “
An Intelligent Functional Network Approach to Develop Mathematical Model to Predict Sonic Waves Travel Time for Carbonate Rocks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
16
.
72.
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Method for Estimating Permeability in Carbonate Reservoirs From Typical Logging Parameters Using Functional Network
,”
53rd U.S. Rock Mechanics/Geomechanics Symposium
,
New York
,
June 23–26
, p.
6
.
73.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Alsabaa
,
A.
, and
Shehri
,
D. A.
,
2020
, “
Functional Neural Networks-Based Model for Prediction of the Static Young’s Modulus for Sandstone Formations
,”
54th U.S. Rock Mechanics/Geomechanics Symposium
,
Online Conference
,
June 28–July 1
, p.
8
.
74.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
75.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of 3rd International Conference on Document Analysis and Recognition
,
Montreal, Canada
,
Aug. 14–16
, Vol.
1
, pp.
278
282
.
76.
Kleinberg
,
E. M.
,
1996
, “
An Overtraining-Resistant Stochastic Modeling Method for Pattern Recognition
,”
Ann. Stat.
,
24
(
6
), pp.
2319
2349
.
77.
Kleinberg
,
E. M.
,
2000
, “
On the Algorithmic Implementation of Stochastic Discrimination
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
5
), pp.
473
490
.
78.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
,
Springer
,
New York
.
79.
Kim
,
Y.
,
Hardisty
,
R.
,
Torres
,
E.
, and
Marfurt
,
K. J.
,
2018
, “
Seismic Facies Classification Using Random Forest Algorithm
,”
2018 SEG International Exposition and 88th Annual Meeting
,
Anaheim, CA
,
Oct. 14–19
, p.
5
.
80.
Hegde
,
C.
,
Wallace
,
S.
, and
Gray
,
K.
,
2015
, “
Using Trees, Bagging, and Random Forests to Predict Rate of Penetration During Drilling
,”
SPE Middle East Intelligent Oil and Gas Conference and Exhibition
,
Abu Dhabi, UAE
,
Sept. 15–16
, p.
12
.
81.
Nasir
,
E.
, and
Rickabaugh
,
C.
,
2018
, “
Optimizing Drilling Parameters Using a Random Forests ROP Model in the Permian Basin
,”
SPE Liquids-Rich Basins Conference—North America
,
Midland, TX
,
Sept. 5–6
, p.
13
.
82.
Sun
,
Y.
,
Ma
,
G.
,
Wang
,
L.
,
Zhang
,
F.
,
Li
,
X.
, and
Mei
,
L.
,
2019
, “
Organic-Matter Content Prediction Based on the Random Forest Algorithm: Application to a Lower Silurian Shale-Gas Reservoir
,”
SEG International Exposition and Annual Meeting
,
San Antonio, TX
,
Sept. 15–20
, p.
5
.
You do not currently have access to this content.