Abstract

Diffuser augmented wind turbines (DAWTs) are incredibly beneficial to low wind speed areas. The duct that surrounds the turbine improves the power output by accelerating the approaching wind directing the wind through the blade. The power output of DAWT mainly depends on the duct length by turbine diameter (L/D) ratio, duct angle, axial distance, and tip clearance between the blade and duct. This article gives an insight into the performance variation of DAWT for various duct L/D ratios. Numerical simulations were performed on DAWT using ansys fluent, and the performance characteristics were studied for different duct L/D ratios, duct angles, and axial distance. The investigations found that axial distance of 0.06D for duct L/D ratios between 0.15 and 0.60 gives improved performance. It was found that the optimal duct angle is a function of the L/D ratio, and as the L/D ratio increases, the duct angle increases. A geometric procedure was used to find the pattern in which the angle increases in other L/D ratios. The geometric procedure helps to keep the duct’s inner profiles merging for duct L/D ratios 0.15 to 0.6 by maintaining constant axial distance. By keeping the ducts as per the proposed procedure resulted in angles 22 deg, 38 deg, 45 deg, and 52 deg for duct L/D = 0.15, 0.3, 0.45, and 0.6. The performance of WT with 30 deg angled ducts and proposed angled ducts was compared. The proposed angled ducts had improved power output than 30 deg angled ducts. The proposed axial distance and duct angles help to use the duct length effectively, which shortens the duct and enhances power output.

References

1.
Lipian
,
M.
,
Karczewski
,
M.
, and
Olasek
,
K.
,
2015
, “
Sensitivity Study of Diffuser Angle and Brim Height Parameters for the Design of 3 Kw Diffuser Augmented Wind Turbine
,”
Open Eng.
,
5
(
1
), pp.
280
286
.
2.
Aranake
,
A. C.
,
Lakshminarayan
,
V. K.
, and
Duraisamy
,
K.
,
2015
, “
Computational Analysis of Shrouded Wind Turbine Configurations Using a 3-Dimensional Rans Solver
,”
Renewable Energy
,
75
(
12
), pp.
818
832
.
3.
Abe
,
K.
,
Nishida
,
M.
,
Sakurai
,
A.
,
Ohya
,
Y.
,
Kihara
,
H.
,
Wada
,
E.
, and
Sato
,
K.
,
2005
, “
Experimental and Numerical Investigations of Flow Fields Behind a Small Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
93
(
12
), pp.
951
970
.
4.
Matsushima
,
T.
,
Takagi
,
S.
, and
Muroyama
,
S.
,
2006
, “
Characteristics of a Highly Efficient Propeller Type Small Wind Turbine With a Diffuser
,”
Renewable Energy
,
31
(
9
), pp.
1343
1354
.
5.
El-Zahaby
,
A. M.
,
Kabeel
,
A.
,
Elsayed
,
S.
, and
Obiaa
,
M.
,
2017
, “
Cfd Analysis of Flow Fields for Shrouded Wind Turbine’s Diffuser Model With Different Flange Angles
,”
Alexandria Eng. J.
,
56
(
1
), pp.
171
179
.
6.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051205
.
7.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051210
.
8.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051214
.
9.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Res. Technol.
,
141
(
5
), p.
051214
.
10.
Shen
,
R.
,
Amano
,
R. S.
, and
Lewinski
,
G.
,
2019
, “
Self-Healing Performance Comparison Between Two Promising Vascular Vessel Systems of the Wind Turbine Blade
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
111203
.
11.
Amano
,
R. S.
,
2021
, “Aerodynamic Behavior of Rear-Tubercle Horizontal Axis Wind Turbine Blade,”
Sustainable Development for Energy, Power, and Propulsion (Green Energy and Technology)
,
A.
De
,
A.
Gupta
,
S.
Aggarwal
,
A.
Kushari
, and
A.
Runchal
, eds.,
Springer
,
Singapore
, pp.
545
562
.
12.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Computational Analysis of An Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
143
(
6
), p.
061302
.
13.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051207
.
14.
Sunden
,
B.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051203
.
15.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051208
.
16.
Shahsavarifard
,
M.
,
Bibeau
,
E. L.
, and
Chatoorgoon
,
V.
,
2015
, “
Effect of Shroud on the Performance of Horizontal Axis Hydrokinetic Turbines
,”
Ocean Eng.
,
96
(
1
), pp.
215
225
.
17.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Res. Technol.
,
143
(
1
), p.
011302
.
18.
Venters
,
R.
,
Helenbrook
,
B. T.
, and
Visser
,
K. D.
,
2018
, “
Ducted Wind Turbine Optimization
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011005
.
19.
Bagheri-Sadeghi
,
N.
,
Helenbrook
,
B. T.
, and
Visser
,
K. D.
,
2018
, “
Ducted Wind Turbine Optimization and Sensitivity to Rotor Position
,”
Wind Energy Sci.
,
3
(
1
), pp.
221
229
.
20.
Kanya
,
B.
, and
Visser
,
K. D.
,
2018
, “
Experimental Validation of a Ducted Wind Turbine Design Strategy
,”
Wind Energy Sci.
,
3
(
2
), pp.
919
928
.
21.
Lilley
,
G.
, and
Rainbird
,
W.
,
1956
,
“A Preliminary Report on the Design and Performance of Ducted Windmills
,” Technical Report, College of Aeronautics Cranfield.
22.
Ten Hoopen
,
P.
,
2009
,
“An Experimental and Computational Investigation of a Diffuser Augmented Wind Turbine; With an Application of Vortex Generators on the Diffuser Trailing Edge,” M.Sc. Thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
23.
Jamieson
,
P. M.
,
2009
, “
Beating Betz: Energy Extraction Limits in a Constrained Flow Field
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031008
.
24.
Khamlaj
,
T. A.
, and
Rumpfkeil
,
M. P.
,
2017
, “
Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines
,”
Energies
,
10
(
1
), p.
38
.
25.
Bagheri-Sadeghi
,
N.
,
Helenbrook
,
B. T.
, and
Visser
,
K. D.
,
2021
, “
Maximal Power Per Device Area of a Ducted Turbine
,”
Wind Energy Sci.
,
6
(
4
), pp.
1031
1041
.
26.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051202
.
27.
Watanabe
,
K.
, and
Ohya
,
Y.
,
2019
, “
Multirotor Systems Using Three Shrouded Wind Turbines for Power Output Increase
,”
ASME J. Energy Res. Technol.
,
141
(
5
), p.
051211
.
28.
Bontempo
,
R.
, and
Manna
,
M.
,
2016
, “
Effects of the Duct Thrust on the Performance of Ducted Wind Turbines
,”
Energy
,
99
(
1
), pp.
274
287
.
29.
do Rio
,
D. A. T. D.
,
Mesquita
,
A. L. A.
,
Vaz
,
J. R. P.
,
Blanco
,
C. J. C.
, and
Pinho
,
J. T.
,
2014
, “
An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented Wind Turbines
,”
Energy Convers. Manage.
,
87
, pp.
1116
1123
.
30.
Vaz
,
J. R.
, and
Wood
,
D. H.
,
2018
, “
Effect of the Diffuser Efficiency on Wind Turbine Performance
,”
Renewable Energy
,
126
(
6
), pp.
969
977
.
31.
Bertagnolio
,
F.
,
Sørensen
,
N.
,
Johansen
,
J.
, and
Fuglsang
,
P.
,
2001
,
Wind Turbine Aerofoil Catalogue
,
Riso National Laboratory
,
Roskilde, Denmark
.
32.
Ramayee
,
L.
, and
Supradeepan
,
K.
,
2021
, “
Performance Evaluation of Cowl-Augmented Wind Turbine
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
1
), pp.
1
13
.
33.
Kosasih
,
B.
, and
Tondelli
,
A.
,
2012
, “
Experimental Study of Shrouded Micro-Wind Turbine
,”
Procedia Eng.
,
49
, pp.
92
98
.
34.
Vaz
,
J. R.
, and
Wood
,
D. H.
,
2016
, “
Aerodynamic Optimization of the Blades of Diffuser-Augmented Wind Turbines
,”
Energy Convers. Manage.
,
123
(
5
), pp.
35
45
.
You do not currently have access to this content.