Abstract

A numerical model of the CentRec® receiver has been developed and validated using the measurement data collected during the experimental test campaign of the centrifugal particle system at the solar tower Jülich. The model has been used to calculate the thermo-optical efficiency of a scaled-up 20 MWth receiver for various receiver geometries. A cost function has been deduced and was used to perform a techno-economic study on an levelized cost of heat (LCOH) basis of the CentRec® receiver concept. Attractive LCOH as low as 0.0209 €/kWhth for a system with thermal storage, or as low as 0.0150 €/kWhth for the LCOH without storage, is predicted. This study has shown that the optimal configuration from an LCOH perspective for a 20 MWth centrifugal particle receiver reaches specific receiver costs of 35 €/kWth. Hereby, the costs of the receiver can be reduced by 60% compared to the original configuration.

References

1.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap, Technical Report No. NREL/TP-5500-67464
.
2.
Kolb
,
G.
,
Ho
,
C.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
,
Power Tower Technology Roadmap and Cost Reduction Plan, Sandia Report No. SAND2011-2419
.
3.
Walczak
,
M.
,
Pineda
,
F.
,
Fernández
,
Á. G.
,
Mata-Torres
,
C.
, and
Escobar
,
R. A.
,
2018
, “
Materials Corrosion for Thermal Energy Storage Systems in CSP Plants
,”
Renewable Sustainable Energy Rev.
,
86
(
1
), pp.
22
44
.
4.
Sötz
,
V. A.
,
Bonk
,
A.
,
Forstner
,
J.
, and
Bauer
,
T.
,
2018
, “
Molten Salt Chemistry in Nitrate Salt Storage Systems: Linking Experiments and Modelling
,”
Energy Procedia
,
155
(
1
), pp.
503
513
.
5.
Calderon
,
A.
,
Barreneche
,
C.
,
Palacios
,
A.
,
Segarra
,
M.
,
Prieto
,
C.
,
Rodriguez-Sanchez
,
A.
, and
Fernandez
,
A. I.
,
2019
, “
Review of Solid Particle Materials for Heat Transfer Fluid and Thermal Energy Storage in Solar Thermal Power Plants
,”
Energy Storage.
,
1
(
4
), pp.
1
20
.
6.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2016
, “
Performance Evaluation of a High-Temperature Falling Particle Receiver
,”
ASME Power & Energy Conference.
,
Charlotte, NC
,
June 26–30
.
7.
Peters
,
G.
,
Golob
,
M.
,
Nguyen
,
C.
,
Jeter
,
S.
,
Danish
,
S.
,
Elleathy
,
A.
, and
Al-Ansary
,
H.
,
2020
, “
Preliminary Design of an All-Ceramic Discrete-Structure Particle Heating Receiver
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050910
.
8.
Ho
,
C.
,
2016
, “
A Review of High-Temperature Particle Receivers for CSP
,”
Appl. Ther. Eng.
,
109
(
Part B
), pp.
958
969
.
9.
Ebert
,
M.
,
Amsbeck
,
L.
,
Rheinländer
,
J.
,
Schlögl-Knothe
,
B.
,
Schmitz
,
S.
,
Sibum
,
M.
,
Uhlig
,
R.
, and
Buck
,
R.
,
2019
, “
Operational Experience of a Centrifugal Particle Receiver Prototype
,”
AIP Conference Proceedings.
,
Casablanca, Morocco
,
Oct. 2–5
.
10.
Wu
,
W.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Uhlig
,
R.
, and
Pitz-Paal
,
R.
,
2013
, “
Proof of Concept Test of a Centrifugal Particle Receiver
,”
SolarPACES
,
Las Vegas, NV
.
11.
Ebert
,
M.
,
Amsbeck
,
L.
,
Jensch
,
A.
,
Hertel
,
J.
,
Rheinländer
,
J.
,
Trebing
,
D.
,
Uhlig
,
R.
, and
Buck
,
R.
,
2016
, “
Upscaling, Manufacturing and Test of a Centrifugal Particle Receiver
,”
Proceedings of the ASME 2016 10th International Conference on Energy Sustainability.
,
Charlotte, NC
,
June 26–30
.
12.
Amsbeck
,
L.
,
Buck
,
R.
,
Ebert
,
M.
,
Gobereit
,
B.
,
Hertel
,
J.
,
Jensch
,
A.
,
Rheinländer
,
J.
,
Trebing
,
D.
, and
Uhlig
,
R.
,
2018
, “
First Test of a Centrifugal Particle Receiver With a 1 m2 Aperture
,”
SolarPACES 2017
,
Santiago, Chile
,
Sept. 26–29
.
13.
Frantz
,
C.
,
Ebert
,
M.
, and
Amsbeck
,
L.
,
2019
, “
Experimental Evaluation of the Thermo-Optical Efficiency of the Centrifugal Particle Receiver
,”
13th International Conference on Energy Sustainability ES 2019
,
Bellevue, WA
,
July 15–18
.
14.
Institute of Solar Research, DLR News
,
2018
,
DLR’s New Solar Receiver CentRec® Exceeds 900 degrees Celsius Target in the Jülich Solar Tower, https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10436/22288_read-51974/
15.
Buck
,
R.
,
2016
,
Solar Power Raytracing Tool SPRAY, User Manual, Version 17, June 2019
.
16.
Schwarzbözl
,
P.
,
Pitz-Paal
,
R.
, and
Schmitz
,
M.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,”
Proceedings of SolarPACES 2009
,
Berlin, Germany
,
Sept. 15–18
.
17.
ANSYS, Inc
,
2019
,
Release 2017.0 Product Help: Chapter 6.5—Radiosity Solution Method
.
18.
Wu
,
W.
,
2015
,
A Centrifugal Particle Receiver for High-Temperature Solar Applications
,
Logos Verlag Berlin GmbH
,
Berlin
.
19.
Flesch
,
R.
,
2016
, “
Windeinfluss auf Cavity-Receiver für Solare Turmkraftwerke
,”
Dissertation
,
RWTH Aachen
,
Selbstverlag
.
20.
Wu
,
W.
,
Uhlig
,
R.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Numerical Simulation of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
Numerical Heat Transfer
,
68
(
2
), pp.
133
149
.
21.
Barin
,
I.
,
2008
,
Thermochemical Data of Pure Substances
, 3rd ed.,
Wiley
,
New York
.
22.
Schneider
,
H.
,
Schreuer
,
J.
, and
Hildmann
,
B.
,
2008
, “
Structure and Properties of Mullite—A Review
,”
J. Eur. Ceram. Soc.
,
28
(
2
), pp.
329
344
.
23.
Sterz
,
W.
,
2017
, “
Entwicklung eines Strahlungsflussdichtemesssystems mit ‘Moving Focus’ für den Solarturm Jülich
,”
Masterarbeit, RWTH Aachen
.
24.
Buck
,
R.
, and
Giuliano
,
S.
,
2019
, “
Solar Tower System Temperature Range Optimization for Reduced LCOE
,”
AIP Conference Proceedings 2126, SolarPACES 2018
,
Casablanca, Morocco
,
Oct. 2–5, 2018
.
25.
Giuliano
,
S.
,
Puppe
,
M.
,
Frantz
,
C.
,
Uhlig
,
R.
,
Flesch
,
R.
,
Baumann
,
T.
, and
Schmalz
,
S.
,
2017
,
High Performance Molten Salt Tower Receiver System, Final Report
.
You do not currently have access to this content.