Abstract

Tomato seed oil biodiesel (TSOB) could be considered as a second-generation and clean-burning renewable substitute for petroleum diesel. It is about 72% by weight of tomato waste, which contains an average of 24% oil. This paper investigated the effects of four different diesel–TSOB blends on the combustion performance of an indirect injection (IDI) diesel engine. In-cylinder pressure (CP) and combustion parameters at five different engine loads and seven speeds were experimentally measured. Then for 2D computational fluid dynamics (CFD) simulation of the emissions and combustion processes, avl fire software was used and the results were evaluated with experimental data. The purpose of the study was to determine the combustion process and its effects on the performance and emissions of the engine. The outcomes for B10 at 100% load addressed that the peak CP of about 67 MPa was found at 1200 revolutions per minute (rpm) which occurred at 13 deg after top dead center (ATDC), while at 2200 rpm the peak CP was 69 MPa and occurred at 1 deg ATDC, and at 2400 rpm the peak CP was found to be about 66 MPa which occurred approximately at the top dead center (TDC). The simulated results found that the peak in-cylinder temperature of 1600 deg K corresponds to the 10% TSOB blend (B10) and the longest mixing-controlled period occurs for B10 at 27 deg crank angle (CA). The simulation also showed that B5 had the longest jet penetration of about 44 mm (at about 100 deg CA) in comparison to 43 mm for B20, 41 mm for B10, and 39.8 mm for B0 (pure diesel) which occurred at less than 100 deg CA. The longest jet penetration duration was found to be about 44 mm for B5 at about 100 deg CA. The results showed that B10 has the biggest accumulative heat release (approximately 1900 J) and the highest fuel energy efficiency. The 2D CFD simulation revealed that the unburnt equivalence ratio in the main combustion chamber is lesser than in the spherical combustion chamber.

References

1.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2020
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Res. Technol.
143
(
2
), p.
022306
.
2.
Demirbas
,
A.
,
2006
, “
Progress and Recent Trends in Biofuels
,”
Prog. Energy Combust. Sci.
,
33
(
1
), pp.
1
18
.
3.
Ghobadian
,
B.
,
1994
, “
A Parametric Study on Diesel Engine Noise
,”
Ph.D. thesis
,
IIT
,
Roorkee, India
.
4.
Yilmaz
,
N.
,
Atmanli
,
A.
,
Hall
,
M. J.
, and
Vigil
,
F. M.
,
2022
, “
Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method
,”
Energies
,
15
(
14
), p.
5144
.
5.
Anwar
,
M.
,
Rasul
,
M. G.
,
Hassan
,
N. M. S.
,
Jahirul
,
M. I.
,
Haque
,
R.
,
Hasan
,
M. M.
,
Mistaken
,
A. G. M. B.
,
Karami
,
R.
, and
Schaller
,
D.
,
2022
, “
Stone Fruit Seed: A Source of Renewable Fuel for Transport
,”
Energies
,
15
(
13
), p.
4667
.
6.
Van Gerpen
,
J. H.
,
2005
, “
Biodiesel Processing and Production
,”
Fuel Process. Technol.
,
86
(
10
), pp.
1097
1107
.
7.
Dahman
,
Y.
,
Syed
,
K.
,
Begum
,
S.
,
Roy
,
P.
, and
Mohtasebi
,
B.
,
2019
, “Biomass, Biopolymer-Based Materials, and Bioenergy,”
Woodhead Publishing Series in Composites Science and Engineering
,
D.
Verma
,
E.
Fortunati
,
S.
Jain
, and
X.
Zhang
, eds.,
Woodhead Publishing
,
Oxford, UK
, pp.
277
325
.
8.
GlobeNewswire
,
2019
, News-Release Sept. 10, 2019, Global-Tomato, http://www.globenewswire.com
9.
Tomato News
,
2016
, “The Global Tomato Processing Industry,” http://www.tomatonews.com/en/background_47.html
10.
Van Dyk
,
S. J.
,
Gama
,
R.
,
Morrison
,
D.
,
Swart
,
S.
, and
Pletschke
,
B. I.
,
2013
, “
Food Processing Waste: Problems, Current Management and Prospects for Utilization of the Lignocellulose Component Through Enzyme Synergistic Degradation
,”
Renew. Sustain. Energy Rev.
,
26
(
C
), pp.
521
531
.
11.
Lovdal
,
T.
,
Droogenbroeck
,
B. V.
,
Eroglu
,
E. C.
, et al
,
2019
, “
Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey As Examples
,”
Foods
,
8
(
7
), p.
229
.
12.
Giuffrè
,
A. M.
,
Sicari
,
V.
,
Capocasale
,
M.
,
Zappia
,
C.
,
Pellicanò
,
T. M.
, and
Poiana
,
M.
,
2016
, “
Physico-Chemical Composition of Tomato Seed Oil for an Edible Use: The Effect of Cultivar
,”
Int. Food Res. J.
,
23
(
2
), pp.
583
591
.
13.
Al-Betawi
,
N. A.
,
2005
, “
Preliminary Study on Tomato Pomace As Unusual Feedstuff in Broiler Diets
,”
Pak. J. Nutr.
,
4
(
1
), pp.
57
63
.
14.
Knoblich
,
M.
,
Anderson
,
B.
, and
Latshaw
,
D.
,
2005
, “
Analyses of Tomato Peel and Seed Byproducts and Their Use As a Source of Carotenoids
,”
J. Sci. Food Agric.
,
85
(
7
), pp.
1166
1170
.
15.
Botineştean
,
C.
,
Gruia
,
A. T.
,
Jianu
,
I.
, and
Teodora
,
A.
,
2015
, “
Utilization of Seeds From Tomato Processing Wastes As Raw Material for Oil Production
,”
J. Mater. Cycles Waste Manage.
,
17
(
1
), pp.
118
124
.
16.
Giuffrè
,
A. M.
,
Sicari
,
V.
,
Capocasale
,
M.
,
Zappia
,
C.
,
Pellicanò
,
T. M.
, and
Poiana
,
M.
,
2015
, “
Physico-Chemical Properties of Tomato Seed Oil (Solanum Lycopersicum L.) for Biodiesel Production
,”
Acta Hort.
,
1081
, pp.
237
244
.
17.
Giuffrè
,
A. M.
,
Capocasale
,
M.
,
Zappia
,
C.
,
Sicari
,
V.
,
Pellicanò
,
T. M.
,
Poiana
,
M.
, and
Panzera
,
G.
,
2016
, “
Tomato Seed Oil for Biodiesel Production
,”
Eur. J. Lipid Sci. Technol.
,
118
(
4
), pp.
640
650
.
18.
Karami
,
R.
,
Kamgar
,
S.
,
Karparvarfard
,
S. H.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2018
, “
Biodiesel Production From Tomato Seed and Its Engine Emission Test and Simulation Using Artificial Neural Network
,”
J. Oil Gas Petrochem. Technol.
,
1
(
1
), pp.
41
62
.
19.
Badra
,
J. A.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H. G.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Res. Technol.
,
138
(
5
), p.
052202
.
20.
Khadem
,
J.
,
2009
, “
Comparison of Combustion Models of Zero-Dimensional and Quasi-Dimensional in Simulation of Spark Ignition Engines
,”
Sixth International Conference on Internal Combustion Engines
,
Tehran, Iran
,
November
, pp.
17
19
.
21.
Lamaris
,
V. T.
, and
Hountalas
,
D. T.
,
2010
, “
A General Purpose Diagnostic Technique for Marine Diesel Engines Application on the Main Propulsion and Auxiliary Diesel Units of a Marine Vessel
,”
Energy Convers. Manage.
,
51
(
4
), pp.
740
753
.
22.
Ramadhas
,
A. S.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2006
, “
Theoretical Modeling and Experimental Studies on Biodiesel-Fueled Engine
,”
Renew. Energy
,
31
(
11
), pp.
1813
1826
.
23.
Huang
,
C.
,
Yao
,
M.
,
Lu
,
C.
, and
Huang
,
Z.
,
2009
, “
Study of Dimethyl Ether Homogeneous Charge Compression Ignition Combustion Process Using a Multi-Dimensional Computational Fluid Dynamics Model
,”
Int. J. Therm. Sci.
,
48
, pp.
1814
1822
.
24.
Bulinski
,
Z.
,
Szczygieł
,
I.
,
Kabaj
,
A.
,
Krysinski
,
T.
,
Gładysz
,
P.
,
Czarnowska
,
L.
, and
Stanek
,
W.
,
2018
, “
Performance Analysis of the Small-Scale a-Type Stirling Engine Using Computational Fluid Dynamics Tools
,”
ASME J. Energy Res. Technol.
,
140
(
3
), p.
032001
.
25.
Najafi
,
B.
,
Piroozpanah
,
V.
,
Ghobadian
,
B.
, and
Sadeghpour Ranjbar
,
A.
,
2007
, “
Experimental Investigation of Diesel Engine Performance Parameters and Pollution Using Biodiesel
,”
Modares Tech. Eng. Spec. Iss. Mech. Eng.
,
28
, pp.
79
91
.
26.
Harish
,
S.
,
Vivek
,
S.
,
Shri
,
K. R.
,
Sudharsan
,
R. S.
, and
Saravana
,
K. N.
,
2017
, “
Investigation of Biodiesel Obtained From Tomato Seed As a Potential Fuel Alternative in a CI Engine
,”
Biofuels
,
10
(
1
), pp.
7277
7269
.
27.
Karami
,
R.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
, and
Anwar
,
M.
,
2019
, “
Performance Analysis of Direct Injection Diesel Engine Fueled With Diesel–Tomato Seed Oil Biodiesel Blending by ANOVA and ANN
,”
Energies
,
12
(
23
), p.
4421
.
28.
Ogunkunle
,
O.
, and
Ahmed
,
N. A.
,
2019
, “
A Review of Global Current Scenario of Biodiesel Adoption and Combustion in Vehicular Diesel Engines
,”
Energy Rep.
,
5
, pp.
1560
1579
.
29.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Res. Technol.
,
140
(
12
), p.
120801
.
30.
Habibian
,
S.
,
Karami
,
R.
, and
Hoseinpour
,
M.
,
2021
, “
Energy and Exergy Analyses of Combustion Process in a DI Diesel Engine Fuelled with Diesel–Biodiesel Blends
,”
Ann. Math. Phys.
,
4
(
1
), pp.
001
008
.
31.
Karami
,
R.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
,
Salahi
,
M. M.
, and
Anwar
,
M.
,
2021
, “
Experimental and Computational Analysis of Combustion Characteristics of a Diesel Engine Fueled With Diesel–Tomato Seed Oil Biodiesel Blends
,”
Fuel
,
285
, p.
119243
.
32.
Karami
,
R.
,
Rasul
,
M. G.
, and
Khan
,
M. M.
,
2020
, “
CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine
,”
Energies
,
13
(
14
), p.
3688
.
33.
GopaL
,
A.
,
Dhavare
,
P.
,
Ali Alharbi
,
S.
,
Nasif
,
O.
,
Strunecký
,
O.
, and
Nithya
,
S.
,
2023
, “
Effect of Injection Pressure on Spray Cone and Penetration Angle for Enhancedfuel Atomization of Various Blended Viscous Fluid: A Numerical Modelling
,”
ASME J. Energy Res. Technol.
145
(
1
), p.
010901
.
34.
Harch
,
C. A.
,
Rasul
,
M. G.
,
Hassan
,
N. M. S.
, and
Bhuiya
,
M. M. K.
,
2014
, “
Modelling of Engine Performance Fuelled With Second Generation Biodiesel
,”
Procedia Eng.
,
90
, pp.
459
465
.
35.
Diesel Engine Motor
,
2019
, Kubota Diesel Engine V3300/V3300-T, http://www.dieselenginemotor.com/kubota/v3300/page1.html
36.
Zhen
,
D.
,
Wang
,
T.
,
Gu
,
F.
,
Tesfa
,
B.
, and
Ball
,
A.
,
2013
, “
Acoustic Measurements for the Combustion Diagnosis of Diesel Engines Fuelled With Biodiesels
,”
Meas. Sci. Technol.
,
24
(
5
), p.
055005
.
37.
AVL List
,
2011
, AVL FIRE User Guide, Version 2011: AVL List GmbH; 2012.
38.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
,
2004
, “
A Robust Near-Wall Elliptic Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
1047
1051
.
39.
Collins
,
M. E.
,
2012
, “
Innovative Numerical Calculation of Transitional Flow With Turbomachinery Application
,”
Doctoral dissertation
,
Graz University of Technology
,
Graz
.
40.
Ishak
,
H. M. K.
,
Ismail
,
F.
,
Che Mat
,
S.
, and
Abdul Aziz
,
M. S.
,
2019
, “
Numerical Study on the Influence of Nozzle Spray Shape on Spray Characteristics Using Diesel and Biofuel Blends
,”
Biofuels
,
12
(
9
), pp.
1109
1121
.
41.
Moldovanu
,
D.
, and
Burnete
,
N.
,
2013
, “
CFD Simulation of a Single Cylinder Research Engine Working With Biodiesel
,”
Therm. Sci.
,
17
(
1
), pp.
195
203
.
42.
Bari
,
S.
,
2013
,
Diesel Engine: Combustion, Emissions and Condition Monitoring (Technology and Engineering)
,
Intechopen
,
London, UK
.
43.
AVL FIRE Physics and Chemistry Help Manual
,
2009
, AVL FIRE® VERSION 2013.
44.
AVL List Gmbh
,
2009
, “
Combustion Module
,” AVL FIRE® VERSION 2013.
45.
Tutak
,
W.
,
2013
, “
CFD Modelling of Diesel Engine at Partial Load
,”
Comm. Motoriz. Energ. Agric.
,
13
(
2
), pp.
97
102
.
46.
Ganestam
,
P.
,
2010
, “
Empirical Knock Model for Automatic Engine Calibration
,”
M.Sc. thesis
,
Lund University
,
Sweden
.
47.
Lounici
,
M. S.
,
Loubar
,
K.
,
Balistrou
,
M.
, and
Tazerout
,
M.
,
2011
, “
Investigation on Heat Transfer Evaluation for a More Efficient Two-Zone Combustion Model in the Case of Natural Gas SI Engines
,”
Appl. Therm. Eng.
,
31
(
2
), pp.
319
328
.
48.
Mobasheri
,
R.
, and
Seddiq
,
M.
,
2017
, “
Applying the Homogeneity Factor to Evaluate the Effects of Pilot Injection Characteristics on Air-Fuel Mixing Quality and Engine Performance in a Turbo-Charged High Speed Direct Injection (HSDI) Diesel Engine
,”
Fuel Combust.
,
10
(
2
), pp.
53
71
.
49.
Ding
,
C. W.
, and
Liu
,
W. J.
,
2016
, “
Numerical Simulation of Emission Characteristics for Single-Cylinder Diesel Engine
,”
Energy Power Eng.
,
8
(
2
), pp.
92
98
.
50.
Mirmohammadi
,
A.
,
Ghadiri
,
M.
, and
Aghamirsalim
,
A. M.
,
2017
, “
Fuel Injection Pressure and Duration Effects on Passenger Diesel Engine Performance and Emissions
,”
Iran. J. Mech. Eng.
,
18
(
4
), pp.
96
114
.
51.
Sharma
,
T. K.
,
Rao
,
G. A. P.
, and
Murthy
,
K. M.
,
2013
, “
Combustion Analysis of Ethanol in a HCCI Engine
,”
Trends Mech. Eng. Technol.
,
3
(
1
), pp.
1
9
.
52.
Chaudhary
,
V.
,
2015
, “
Heat Release Analysis of Small Single Cylinder Diesel Engine Fueled With Diesel and Biodiesel
,”
J. Basic Appl. Eng. Res.
,
2
(
17
), pp.
1496
1501
.
53.
Köten
,
H.
, and
Parlakyiğit
,
A. S.
,
2018
, “
Effects of the Diesel Engine Parameters on the Ignition Delay
,”
Fuel
,
216
, pp.
23
28
.
54.
Ochoa
,
G. V.
,
Peñaloza
,
C. A.
, and
Forero
,
J. F.
,
2020
, “
Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating With Diesel–Biodiesel Blends
,”
Appl. Sci.
,
10
(
3
), p.
907
.
55.
Dueso
,
C.
,
Muñoz
,
M.
,
Moreno
,
F.
,
Arroyo
,
J.
,
Gil-Lalaguna
,
N.
,
Bautista
,
A.
,
Gonzalo
,
A.
, and
Sánchez
,
J. L.
,
2018
, “
Performance and Emissions of a Diesel Engine Using Sunflower Biodiesel With a Renewable Antioxidant Additive From Bio-Oil
,”
Fuel
,
234
, pp.
276
285
.
56.
Lai
,
J. Y. W.
,
Lin
,
K. C.
, and
Violi
,
A.
,
2011
, “
Biodiesel Combustion: Advances in Chemical Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
1
14
.
57.
Tse
,
H.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2015
, “
Investigation on the Combustion Characteristics and Particulate Emissions From a Diesel Engine Fueled With Diesel–Biodiesel–Ethanol Blends
,”
Energy
,
83
, pp.
343
350
.
58.
Zheng
,
M.
,
Mulenga
,
M. C.
,
Reader
,
G. T.
,
Reader
,
M.
,
Ting
,
D.
, and
Tjong
,
J.
,
2008
, “
Biodiesel Engine Performance and Emissions in Low Temperature Combustion
,”
Fuels
,
87
(
6
), pp.
714
722
.
59.
Šarić
,
S.
,
Basara
,
B.
, and
Žunič
,
Z.
,
2016
, “
Advanced Near-Wall Modeling for Engine Heat Transfer
,”
Int. J. Heat Fluid Flow
,
63
, pp.
205
211
.
60.
Muharam
,
Y.
,
Mahendra
,
M.
,
Giffari
,
F.
, and
Kartohardjono
,
S.
,
2015
, “
Effects of Injection Temperature and Pressure on Combustion in an Existing Otto Engine Using CNG Fuel
,”
J. Environ. Sci. Technol.
,
8
(
1
), pp.
25
34
.
61.
Buyukkaya
,
E.
,
2008
, “
Thermal Analysis of Functionally Graded Coating AlSi Alloy and Steel Pistons
,”
Surf. Coat. Technol.
,
202
(
16
), pp.
3856
3865
.
62.
Sivalakshmi
,
S.
, and
Balusamy
,
T.
,
2012
, “
Effects of Dimethyl Carbonate–Biodiesel Blends on the Combustion, Performance and Exhaust Emissions of a DI Diesel Engine
,” SAE International.
63.
Ramalingam
,
S.
, and
Mahalakshmi
,
N. V.
,
2020
, “
Influence of Moringa Oleifera Biodiesel–Diesel–Hexanol and Biodiesel–Diesel–Ethanol Blends on Compression Ignition Engine Performance, Combustion and Emission Characteristics
,”
RSC Adv.
,
10
(
8
), pp.
4274
4285
.
64.
Shekle
,
P. S.
,
Sakhare
,
N. M.
, and
Lahane
,
S.
,
2016
, “
Investigation of Combustion Characteristics of a Cottonseed Biodiesel Fuelled Diesel Engine
,”
Procedia Technol.
,
25
, pp.
1049
1055
.
65.
Vijayaraj
,
K.
,
Sathiyagnanam
,
A. P.
, and
Nagar
,
A.
,
2014
, “
A Comprehensive Review on Combustion of Compression Ignition Engines Using Biodiesel
,”
IAEME
,
5
(
1
), pp.
44
56
.
66.
Uyumaz
,
A.
,
Aksoy
,
F.
,
Boz
,
F.
, and
Yılmaz
,
E.
,
2017
, “
Experimental Investigation of Neutralized Waste Cooking Oil Biodiesel and Diesel Fuels in a Direct Injection Diesel Engine at Different Engine Loads
,”
Int. J. Autom. Sci. Technol.
,
1
(
1
), pp.
7
15
.
67.
Govindan
,
R.
,
Jakhar
,
O. P.
, and
Mathur
,
Y. B.
,
2014
, “
Computational Analysis of Thumba Biodiesel–Diesel Blends Combustion in CI Engine Using Ansys-Fluent
,”
Int. J. Comput. Math. Sci.
,
3
(
8
), pp.
29
39
.
68.
Raman
,
L. A.
,
Deepanraj
,
B.
,
Rajakumar
,
S.
, and
Sivasubramanian
,
V.
,
2019
, “
Experimental Investigation on Performance, Combustion and Emission Analysis of a Direct Injection Diesel Engine Fueled With Rapeseed Oil Biodiesel
,”
Fuel
,
246
, pp.
69
74
.
69.
Asokan
,
M.
,
SenthurPrabu
,
S.
,
Bade
,
P. K.
,
Nekkanti
,
V. M.
, and
Gutta
,
S. S.
,
2019
, “
Performance, Combustion and Emission Characteristics of Juliflora Biodiesel Fuelled DI Diesel Engine
,”
Energy
,
173
, pp.
883
892
.
70.
Ghaly
,
A. E.
,
Dave
,
D.
,
Brookes
,
M. S.
, and
Budge
,
S.
,
2010
, “
Production of Biodiesel by Enzymatic Transesterification: Review
,”
Am. J. Biochem. Biotechnol.
,
6
(
2
), pp.
54
76
.
71.
Boggavarapu
,
P.
, and
Ravikrishna
,
R. V.
,
2013
, “
A Review on Atomization and Sprays of Biofuels for IC Engine Applications
,”
Int. J. Spray Combust. Dyn.
,
5
(
2
), pp.
85
121
.
72.
Activation Energy
,
2016
, http://www.chem.fsu.edu, Archived from the original on Dec. 7, 2016.
73.
Schmitz
,
G.
,
2005
, “
What Is a Reaction Rate?
,”
J. Chem. Educ.
,
82
(
7
), p.
1091
.
74.
Yang
,
Z.
,
Hollebone
,
B. P.
,
Wang
,
Z.
, and
Yang
,
C. M.
,
2011
, “
Landaulet, Evaporation and Stability of Biodiesel and Blends With Diesel in Ambient Conditions
,” AMOP, Banff, AB, 520.
75.
Sann Tan
,
E.
,
Anwar
,
M.
,
Adnan
,
R.
, and
Idris
,
M. A.
,
2013
, “
Biodiesel for Gas Turbine Application an Atomization Characteristics Study
,”
Adv. Int. Combust. Eng. Fuel Technol.
, pp.
213
242
.
76.
Fratalocchi
,
V.
, and
Kok
,
J. B. W.
,
2017
, “
The Computational Singular Perturbation/Perfectly Stirred Reactor Approach in Reduced Chemistry of Premixed Ethanol Combustion
,”
Combust. Sci. Technol.
,
189
(
10
), pp.
1659
1680
.
77.
Ma
,
L.
,
Naud
,
B.
, and
Roekaerts
,
D. J. E. M.
,
2015
, “
Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame
,”
Flow Turbul. Combust.
,
96
(
2
), pp.
469
502
.
78.
Sadiki
,
A.
,
Chrigui
,
M.
, and
Dreizler
,
A.
,
2013
, “
Thermodynamically Consistent Modelling of Gas Turbine Combustion Sprays
,”
Fluid Mech. Appl.
,
1581
, pp.
55
90
.
79.
Jafari
,
S.
,
Khaleghi
,
H.
, and
Maddahian
,
R.
,
2019
, “
Comparative Analysis of a Single Fuel Droplet Evaporation
,”
J. Chem. Petrol. Eng.
,
53
(
1
), pp.
81
90
.
80.
Hebbar
,
S. G.
,
2014
, “
NOx From Diesel Engine Emission and Control Strategies—A Review
,”
IJMERR
,
3
(
4
), pp.
471
482
.
You do not currently have access to this content.