Abstract

The main factor contributing to the decline in effective fracture width and conductivity is proppant embedding into the fracture surface. In the deep shale's high-temperature, high-pressure, and high-stress environment, the rheological properties of rock cause proppant embedding to be deeper. Additionally, the effect of hydraulic fracture is difficult to maintain after fracturing, which causes a sharp decline in cumulative production. In this paper, the Hertz contact theory is used to establish a long-term fracture conductivity model that incorporates the two embedding behaviors of proppant elastic deformation and reservoir creep deformation. Through time integration, the variation of long-term fracture conductivity is obtained. The experimental data and the theoretical model agree well. The results show that long-term fracture conductivity gradually decreases as the proppant progresses from the elastic embedding stage to the creep embedding stage. The elastic modulus, viscoelastic coefficient, and particle size significantly impact on the fracture width. The rock's elastic modulus and viscoelastic coefficient have a negligible impact on the long-term fracture conductivity, which is positively correlated with sand concentration, proppant particle size, and elastic modulus. In this research, an accurate and effective analysis model is proposed to quantify the long-term fracture conductivity, reveal the hydraulic fracture closure mechanism of deep shale under high temperature and high stress, and provide technological solutions for long-term maintenance of high conductivity fracture channels, which is useful to increase deep shale production efficiency, lower the production decline rate, and extend the stable production cycle.

References

1.
Luffel
,
D.
,
Hopkins
,
C.
, and
Schettler
,
P.
,
1993
, “
Matrix Permeability Measurement of Gas Productive Shales
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
. Paper No. SPE-26633-MS.
2.
Alafnan
,
S.
, and
Yucel Akkutlu
,
I.
,
2020
, “
The Transport Mechanisms and Dynamics of Shale via Multiscale Multiphysics Pore Network Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
093003
.
3.
Chen
,
Y.
,
Jiang
,
C.
,
Yin
,
G.
,
Wojtanowicz
,
A. K.
, and
Zhang
,
D.
,
2020
, “
Permeability and Effective Stress in Dipping gas Shale Formation With Bedding—Experimental Study
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103002
.
4.
Hassan
,
A.
,
Mahmoud
,
M.
,
Al-Majed
,
A.
,
Alade
,
O.
,
Mokheimer
,
E. M. A.
, and
Al-Nakhli
,
A.
,
2021
, “
New Treatment for Improving the Productivity of Shale Reservoirs Using Thermochemical Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083003
.
5.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
.
6.
Kou
,
Z.
, and
Wang
,
H.
,
2020
, “
Transient Pressure Analysis of a Multiple Fractured Well in a Stress-Sensitive Coal Seam Gas Reservoir
,”
Energies
,
13
(
15
), p.
3849
.
7.
Sanaei
,
A.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2018
, “
Nanopore Confinement and Pore Connectivity Considerations in Modeling Unconventional Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012904
.
8.
Lin
,
R.
,
Ren
,
L.
,
Zhao
,
J.
,
Tan
,
X.
,
Rasouli
,
V.
,
Wang
,
X.
,
Wu
,
J.
,
Song
,
Y.
, and
Shen
,
C.
,
2022
, “
Stress and Pressure Dependent Permeability of Shale Rock: Discrete Element Method (dem) Simulation on Digital Core
,”
J. Pet. Sci. Eng.
,
208
, p.
109797
.
9.
Wei
,
Y.
,
Wang
,
J.
,
Jia
,
A.
,
Liu
,
C.
,
Luo
,
C.
, and
Qi
,
Y.
,
2021
, “
Optimization of Managed Drawdown for a Well With Stress-Sensitive Conductivity Fractures: Workflow and Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
8
),
083006
.
10.
Zhao
,
J.
,
Ren
,
L.
,
Jiang
,
T.
,
Hu
,
D.
,
Wu
,
L.
,
Wu
,
J.
,
Yin
,
C.
, et al
,
2022
, “
Ten Years of Gas Shale Fracturing in China: Review and Prospect
,”
Natural Gas Industry B
,
9
(
2
), pp.
158
175
.
11.
Jiang
,
J.
, and
Yang
,
J.
,
2018
, “
Coupled Fluid Flow and Geomechanics Modeling of Stress-Sensitive Production Behavior in Fractured Shale Gas Reservoirs
,”
Int. J. Rock Mech. Min. Sci.
,
101
, pp.
1
12
.
12.
Wang
,
H.
,
Kou
,
Z.
,
Guo
,
J.
, and
Chen
,
Z.
,
2021
, “
A Semi-Analytical Model for the Transient Pressure Behaviors of a Multiple Fractured Well in a Coal Seam Gas Reservoir
,”
J. Pet. Sci. Eng.
,
198
, p.
108159
.
13.
Kou
,
Z.
,
Zhang
,
D.
,
Chen
,
Z.
, and
Xie
,
Y.
,
2022
, “
Quantitatively Determine co2 Geosequestration Capacity in Depleted Shale Reservoir: A Model Considering Viscous Flow, Diffusion, and Adsorption
,”
Fuel
,
309
, p.
122191
.
14.
Hughes
,
J. D.
,
2013
, “
A Reality Check on the Shale Revolution
,”
Nature
,
494
(
7437
), pp.
307
308
.
15.
Lacy
,
L.
,
Rickards
,
A.
, and
Bilden
,
D.
,
1998
, “
Fracture Width and Embedment Testing in Soft Reservoir Sandstone
,”
SPE Drilling & Completion
,
13
(
01
), pp.
25
29
.
16.
Ahamed
,
M.
,
Perera
,
M.
,
Dong-Yin
,
L.
,
Ranjith
,
P. G.
, and
Matthai
,
S. K.
,
2019
, “
Proppant Damage Mechanisms in Coal Seam Reservoirs During the Hydraulic Fracturing Process: A Review
,”
Fuel
,
253
, pp.
615
629
.
17.
Guo
,
D.
,
Zhao
,
Y.
,
Guo
,
Z.
,
Cui
,
X.
, and
Huang
,
B.
,
2020
, “
Theoretical and Experimental Determination of Proppant Crushing Rate and Fracture Conductivity
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
083006
.
18.
Wen
,
Q.
,
Zhang
,
S.
,
Wang
,
L.
,
Liu
,
Y.
, and
Li
,
X.
,
2007
, “
The Effect of Proppant Embedment Upon the Long-Term Conductivity of Fractures
,”
J. Pet. Sci. Eng.
,
55
(
3–4
), pp.
221
227
.
19.
Lee
,
D. S.
,
Elsworth
,
D.
,
Yasuhara
,
H.
,
Weaver
,
J. D.
, and
Rickman
,
R.
,
2010
, “
Experiment and Modeling to Evaluate the Effects of Proppant-Pack Diagenesis on Fracture Treatments
,”
J. Pet. Sci. Eng.
,
74
(
1–2
), pp.
67
76
.
20.
Yasuhara
,
H.
,
Elsworth
,
D.
, and
Polak
,
A.
,
2003
, “
A Mechanistic Model for Compaction of Granular Aggregates Moderated by Pressure Solution
,”
J. Geophys. Res. Solid Earth
,
108
(
B11
), p.
2530
.
21.
Hou
,
T.
,
Zhang
,
S.
,
Ma
,
X.
,
Shao
,
J.
,
He
,
Y.
,
Lv
,
X.
, and
Han
,
J.
,
2017
, “
Experimental and Theoretical Study of Fracture Conductivity With Heterogeneous Proppant Placement
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
449
461
.
22.
Volk
,
L. J.
,
Raible
,
C. J.
,
Carroll
,
H. B.
, and
Spears
,
J. S.
,
1981
, “
Embedment of High Strength Proppant Into Low-Permeability Reservoir Rock
,”
Proceedings of the SPE/DOE Low Permeability Gas Reservoirs Symposium
,
Denver, CO
, Paper No. SPE-9867-MS.
23.
Chen
,
D.
,
Ye
,
Z.
,
Pan
,
Z.
,
Zhou
,
Y.
, and
Zhang
,
J.
,
2017
, “
A Permeability Model for the Hydraulic Fracture Filled With Proppant Packs Under Combined Effect of Compaction and Embedment
,”
J. Pet. Sci. Eng.
,
149
, pp.
428
435
.
24.
Neto
,
L. B.
,
Khanna
,
A.
, and
Kotousov
,
A.
,
2015
, “
Conductivity and Performance of Hydraulic Fractures Partially Filled With Compressible Proppant Packs
,”
Int. J. Rock Mech. Min. Sci.
,
74
, pp.
1
9
.
25.
Deng
,
S.
,
Li
,
H.
,
Ma
,
G.
,
Huang
,
H.
, and
Li
,
X.
,
2014
, “
Simulation of Shale–Proppant Interaction in Hydraulic Fracturing by the Discrete Element Method
,”
Int. J. Rock Mech. Min. Sci.
,
70
, pp.
219
228
.
26.
Li
,
K.
,
Gao
,
Y.
,
Lyu
,
Y.
, and
Wang
,
M.
,
2015
, “
New Mathematical Models for Calculating Proppant Embedment and Fracture Conductivity
,”
SPE J.
,
20
(
3
), pp.
496
507
.
27.
Johnson
,
K. L.
,
1987
. “Contact Mechanics,”
Cambridge University Press
,
Cambridge, UK
.
28.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
29.
Liu
,
T.
,
Lin
,
B.
, and
Yang
,
W.
,
2017
, “
Impact of Matrix–Fracture Interactions on Coal Permeability: Model Development and Analysis
,”
Fuel
,
207
, pp.
522
532
.
30.
Akrad
,
O.
,
Miskimins
,
J.
, and
Prasad
,
M.
,
2011
, “
The Effects of Fracturing Fluids on Shale Rock Mechanical Properties and Proppant Embedment
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Los Angeles, CA
, Paper No. SPE-146658-MS.
31.
Sone
,
H.
, and
Zoback
,
M.
,
2010
, “
Strength, Creep and Frictional Properties of Gas Shale Reservoir Rocks
,”
Proceedings of the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium
,
Salt Lake City, UT
, Paper No. ARMA-10-463.
32.
Malyarenko
,
A.
, and
Ostoja-Starzewski
,
M.
,
2017
, “
A Random Field Formulation of Hooke’s Law in All Elasticity Classes
,”
J. Elast.
,
127
, pp.
269
302
.
33.
Anderssen
,
R. S.
,
Götz
,
I. G.
, and
Hoffmann
,
K.-H.
,
1998
, “
The Global Behavior of Elastoplastic and Viscoelastic Materials With Hysteresis-Type State Equations
,”
SIAM J. Appl. Math.
,
58
(
2
), pp.
703
723
.
34.
Gerbeau
,
J. F.
, and
Perthame
,
B.
,
2001
, “
Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation
,”
Disc. Contin. Dyn. Sys. (B)
,
1
(
1
), pp.
89
102
.
35.
Renaud
,
J. P.
, and
Henning
,
W. G.
,
2018
, “
Increased Tidal Dissipation Using Advanced Rheological Models: Implications for IO and Tidally Active Exoplanets
,”
Astrophys. J.
,
857
(
98
), pp.
1
29
.
36.
Papoulia
,
K. D.
,
Panoskaltsis
,
V. P.
,
Kurup
,
N. V.
, and
Korovajchuk
,
I.
,
2010
, “
Rheological Representation of Fractional Order Viscoelastic Material Models
,”
Rheol. Acta
,
49
(
4
), pp.
381
400
.
37.
Gattulli
,
V.
,
Potenza
,
F.
, and
Spencer
,
B. F.
,
2018
, “
Design Criteria for Dissipative Devices in Coupled Oscillators Under Seismic Excitation
,”
Struct. Control & Health Monit.
,
25
(
7
), p.
e2167
.
38.
Gao
,
L.
,
Dan
,
H.
, and
Chen
,
J.
,
2017
, “
Research on Predicting the Rutting of Asphalt Pavement Based on a Simplified Burgers Creep Model
,”
Math. Probl. Eng.
,
2017
,
1
14
.
39.
Ter Haar
,
D.
,
1951
, “
An Easy Approximate Method of Determining the Relaxation Spectrum of a Viscoelastic Materials
,”
J. Polym. Sci.
,
6
(
2
), pp.
247
250
.
40.
Wang
,
Z.
, and
Li
,
Y.
,
2008
,
Rheological Theory and Numerical Simulation of Rock Mass
,
Science Press
,
Beijing
.
41.
Christense
,
R. M.
,
2003
,
Theory of Viscoelasticity, 2nd ed.
,
Dover Publications Inc
,
New York
.
42.
Henderson
,
N.
,
Brêttas
,
J. C.
, and
Sacco
,
W. F.
,
2010
, “
A Three-Parameter Kozeny–Carman Generalized Equation for Fractal Porous Media
,”
Chem. Eng. Sci.
,
65
(
15
), pp.
4432
4442
.
43.
Lu
,
C.
,
Guo
,
J.
,
Wang
,
W.
, et al
,
2008
, “
Experiment Research on Proppant Embedment and Its Damage to Fractures Conductivity
,”
Natural Gas Industry
,
28
(
2
), pp.
99
101
.
44.
Luo
,
Z.
,
Zhang
,
N.
,
Zhao
,
L.
,
Liu
,
F.
,
Liu
,
P.
,
Li
,
N.
,
2020
, “
Modeling of Pressure Dissolution, Proppant Embedment, and the Impact on Long-Term Conductivity of Propped Fractures
,”
J. Pet. Sci. Eng.
,
186
, pp.
106693
.
45.
Becq
,
D.
,
Claude
,
R.
, and
Sarda
,
J.
,
1984
, “
High-Strength Proppants Behavior Under Extreme Conditions
,”
Proceedings of the SPE Formation Damage Control Symposium
,
Bakersfield, CA
, Paper No. SPE-12487-MS.
You do not currently have access to this content.