Abstract

High-voltage electric pulse (HVEP) electrode bit has a considerable influence on the drilling and rock-breaking (RB) efficiency. HVEP electrode bit was systematically studied to optimize the structural parameters in order to improve RB efficiency. This paper analyzed the impact of main structural parameters on electric field strength (EFS) and depth of penetration (DOP) during high-voltage electric pulse drilling. A structural optimization method integrating back propagation (BP) neural network and genetic algorithm for HVEP electrode bit was proposed. The method mapped the complex nonlinear relationships among electrode distance, electrode cone angle, electrode grounding span, etc., and EFS and DOP by establishing a BP neural network model, and adopted the non-dominated sorting genetic algorithm-II (NSGA-II) to optimize the main structural parameters. The simulation data showed that the combined BP neural network/non-dominated sorting genetic algorithm-II (BP-NSGA-II) was an effective tool for optimizing the injection molding process. The multi-objective optimization of the structural parameters of the HVEP electrode bit based on the NSGA-II algorithm was crucial to direct the choice of the process parameters of the HVEP electrode bit, boost the RB efficiency, and lower the energy loss during drilling.

References

1.
Song
,
H.
,
Shi
,
H.
,
Li
,
G.
,
Ji
,
Z.
,
Li
,
S.
,
Liu
,
C.
, and
Li
,
X.
,
2021
, “
Three-Dimensional Numerical Simulation of Energy Transfer Efficiency and Rock Damage in Percussive Drilling With Multiple-Button Bit
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
024501
.
2.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
3.
Cao
,
Q.
,
Shi
,
H.
,
Xu
,
W.
,
Xiong
,
C.
,
Yang
,
Z.
, and
Ji
,
R.
,
2022
, “
Theoretical and Experimental Studies of Impact Energy and Rock-Drilling Efficiency in Vibro-Impact Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023201
.
4.
Kuznetsova
,
N. S.
,
Lopatin
,
V. V.
, and
Yudin
,
A. S.
,
2014
, “
Effect of Electro-Discharge Circuit Parameters on the Destructive Action of Plasma Channel in Solid Media
,”
J. Phys. Conf. Ser.
,
552
(
1
), p.
012029
.
5.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
, and
Chikhotkin
,
V.
,
2018
, “
Influences on High-Voltage Electro Pulse Boring in Granite
,”
Energies
,
11
(
9
), p.
2461
.
6.
Li
,
C.
,
Duan
,
L.
,
Tan
,
S.
,
Chikhotkin
,
V.
, and
Fu
,
W.
,
2019
, “
Damage Model and Numerical Experiment of High-Voltage Electro Pulse Boring in Granite
,”
Energies
,
12
(
4
), p.
727
.
7.
Rossi
,
E.
,
Adams
,
B.
,
Vogler
,
D.
,
Rudolf Von Rohr
,
P.
,
Kammermann
,
B.
, and
Saar
,
M. O.
,
2020
, “
Advanced Drilling Technologies to Improve the Economics of Deep Geo-Resource Utilization
,”
2nd Applied Energy Symposium: MIT A + B (MITAB 2020)
,
Boston, MA
,
Aug. 13–14
,
p. 148
.
8.
Kusaiynov
,
K.
,
Nussupbekov
,
B. R.
,
Shuyushbayeva
,
N. N.
,
Tanasheva
,
N. K.
,
Shaimerdenova
,
K. M.
, and
Khassenov
,
A. K.
,
2017
, “
On Electric-Pulse Well Drilling and Breaking of Solids
,”
Tech. Phys.
,
62
(
6
), pp.
867
870
.
9.
Timoshkinrc
,
I. V.
,
Mackersie
,
J. W.
, and
MacGregor
,
S. J.
,
2003
, “
Plasma Channel Microhole Drilling Technology
,”
Digest of Technical Papers. PPC-2003, 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472)
.
10.
Lehmann
,
F.
,
Anders
,
E.
,
Voigt
,
M.
,
Reich
,
M.
, and
Kunze
,
G.
,
2015
, “
Electric Impulse Technology–Long Run Drilling in Hard Rocks
,”
Oil Gas Eur. Mag.
,
41
(
1
), pp.
42
45
.
11.
Ushakov
,
V. Y.
,
Vajov
,
V. F.
, and
Zinoviev
,
N. T.
,
2019
,
Electro-Discharge Technology for Drilling Wells and Concrete Destruction
,
Springer International Publishing
,
Cham, Switzerland
.
12.
Gan
,
C.
,
Cao
,
W.
,
Liu
,
K.
,
Wu
,
M.
,
Wang
,
F.
, and
Zhang
,
S.
,
2019
, “
A New Hybrid Bat Algorithm and Its Application to the ROP Optimization in Drilling Processes
,”
IEEE Trans. Ind. Inf.
,
16
(
12
), pp.
7338
7348
.
13.
Zhao
,
L.
,
Yan
,
Y.
,
Yan
,
X.
, and
Zhao
,
L.
,
2019
, “
Structural Parameters Optimization of Elastic Cell in a Near-Bit Drilling Engineering Parameters Measurement Sub
,”
Sensors-Basel
,
19
(
15
), p.
3343
.
14.
Li
,
L.
,
Zhang
,
D. D.
,
Sha
,
L. X.
, and
Xu
,
H.
,
2014
, “
PSO-Based Multiobjective Optimization of Drilling Parameters
,”
Mod. Electron. Tech.
,
37
(
10
), pp.
24
27
.
15.
Inoue
,
H.
,
Lisitsyn
,
I. V.
,
Akiyama
,
H.
, and
Nishizawa
,
I.
,
1999
, “
Pulsed Electric Breakdown and Destruction of Granite
,”
Jpn J. Appl. Phys.
,
38
(
11R
), p.
6502
.
16.
Andres
,
U.
,
Timoshkin
,
I.
, and
Soloviev
,
M.
,
2001
, “
Energy Consumption and Liberation of Minerals in Explosive Electrical Breakdown of Ores
,”
Miner. Process. Extr. Metall.
,
110
(
3
), pp.
149
157
.
17.
Biela
,
J.
,
Marxgut
,
C.
,
Bortis
,
D.
, and
Kolar
,
J. W.
,
2009
, “
Solid State Modulator for Plasma Channel Drilling
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
4
), pp.
1093
1099
.
18.
van der Wielen
,
K. P.
,
Pascoe
,
R.
,
Weh
,
A.
,
Wall
,
F.
, and
Rollinson
,
G.
,
2013
, “
The Influence of Equipment Settings and Rock Properties on High Voltage Breakage
,”
Miner. Eng.
,
46
, pp.
100
111
.
19.
Cho
,
S. H.
,
Cheong
,
S. S.
,
Yokota
,
M.
, and
Kaneko
,
K.
,
2016
, “
The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation
,”
Rock Mech. Rock Eng.
,
49
(
10
), pp.
3841
3853
.
20.
Huang
,
G.
,
2013
, “Research on High Voltage Pulse Discharge Rock Crushing,” Huazhong University of Science and Technology.
21.
Köppen
,
M.
, and
Yoshida
,
K.
,
2007
, “
Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems
,” Lecture Notes in Computer Science, vol. 4403,
International Conference on Evolutionary Multi-Criterion Optimization
,
Matsushima, Japan
,
Mar. 5–8
22.
Bekele
,
E. G.
, and
Nicklow
,
J. W.
,
2007
, “
Multi-Objective Automatic Calibration of SWAT Using NSGA-II
,”
J. Hydrol.
,
341
(
3–4
), pp.
165
176
.
23.
Hu
,
Y.
,
Bie
,
Z.
,
Ding
,
T.
, and
Lin
,
Y.
,
2016
, “
An NSGA-II Based Multi-Objective Optimization for Combined Gas and Electricity Network Expansion Planning
,”
Appl. Energy
,
167
, pp.
280
293
.
24.
Wang
,
K.
,
Wang
,
R.
,
Liu
,
Y.
, and
Song
,
G.
,
2017
, “
Multi-Objective Optimization of Drilling Parameters Based on Pareto Optimality
,”
China Mech. Eng.
,
28
(
13
), p.
1580
.
25.
Wang
,
K.
,
He
,
Y.
,
Xue
,
X.-D.
, and
Du
,
B.-C.
,
2017
, “
Multi-Objective Optimization of the Aiming Strategy for the Solar Power Tower With a Cavity Receiver by Using the Non-Dominated Sorting Genetic Algorithm
,”
Appl. Energy
,
205
, pp.
399
416
.
26.
Wei
,
L.
,
Yan
,
F.
,
Hu
,
J.
,
Xi
,
G.
,
Liu
,
B.
, and
Zeng
,
J.
,
2017
, “
NoX Conversion Efficiency Optimization Based on NSGA-II and State-Feedback Nonlinear Model Predictive Control of Selective Catalytic Reduction System in Diesel Engine
,”
Appl. Energy
,
206
, pp.
959
971
.
27.
Zhou
,
X.
,
Qin
,
D.
, and
Hu
,
J.
,
2017
, “
Multi-Objective Optimization Design and Performance Evaluation for Plug-In Hybrid Electric Vehicle Powertrains
,”
Appl. Energy
,
208
, pp.
1608
1625
.
28.
Gan
,
C.
,
Cao
,
W.
, and
Liu
,
K.
,
2018
, “
To Improve Drilling Efficiency by Multi-Objective Optimization of Operational Drilling Parameters in the Complex Geological Drilling Process
,”
2018 37th Chinese Control Conference (CCC)
,
Wuhan, China
,
July 25–27
, pp.
10238
10243
.
29.
Marti
,
J.
,
Geissbühler
,
L.
,
Becattini
,
V.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2018
, “
Constrained Multi-Objective Optimization of Thermocline Packed-Bed Thermal-Energy Storage
,”
Appl. Energy
,
216
, pp.
694
708
.
30.
Wang
,
C.
,
Wang
,
W.
,
Zhao
,
W.
,
Wang
,
Y.
, and
Zhou
,
G.
,
2018
, “
Structure Design and Multi-Objective Optimization of a Novel NPR Bumper System
,”
Composites, Part B
,
153
, pp.
78
96
.
31.
Gu
,
X.
,
Wang
,
T.
,
Chen
,
W.
,
Luo
,
Y.
, and
Tao
,
Z.
,
2019
, “
Multi-Objective Optimization on Structural Parameters of Torsional Flow Heat Exchanger
,”
Appl. Therm. Eng.
,
161
, p.
113831
.
32.
Yudin
,
A. S.
,
Zhurkov
,
M. Y.
,
Martemyanov
,
S. M.
,
Datskevich
,
S. Y.
, and
Vazhov
,
V. F.
,
2019
, “
Electrical Discharge Drilling of Granite With Positive and Negative Polarity of Voltage Pulses
,”
Int. J. Rock Mech. Min. Sci.
,
123
, p.
104058
.
33.
Li
,
C.
,
Duan
,
L.
,
Wu
,
L.
,
Tan
,
S.
,
Zheng
,
J.
, and
Chikhotkin
,
V.
,
2020
, “
Experimental and Numerical Analyses of Electro-Pulse Rock-Breaking Drilling
,”
J. Nat. Gas Sci. Eng.
,
77
, p.
103263
.
34.
Walsh
,
S. D.
, and
Vogler
,
D.
,
2020
, “
Simulating Electropulse Fracture of Granitic Rock
,”
Int. J. Rock Mech. Min. Sci.
,
128
, p.
104238
.
35.
Li
,
C.
,
Duan
,
L.
,
Wu
,
L.
,
Tan
,
S.
,
Zheng
,
J.
, and
Chikhotkin
,
V.
,
2021
, “
Optimization of Discharge Circuit Model Based on Electro Pulse Boring Experiment
,”
J. Nat. Gas Sci. Eng.
,
86
, p.
103730
.
36.
Yang
,
W.
,
Zhu
,
W.
,
Li
,
Y.
,
Zhang
,
L.
,
Zhao
,
B.
,
Xie
,
C.
,
Yan
,
Y.
, and
Huang
,
L.
,
2022
, “
Annular Thermoelectric Generator Performance Optimization Analysis Based on Concentric Annular Heat Exchanger
,”
Energy
,
239
, p.
122127
.
37.
He
,
M.
,
Jiang
,
J.
,
Huang
,
G.
,
Liu
,
J.
, and
Li
,
C.
,
2013
, “
Disintegration of Rocks Based on Magnetically lsolated High Voltage Discharge
,”
Rev. Sci. Instrum.
,
84
(
2
), p.
024704
.
You do not currently have access to this content.