Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained using an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers up to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re>210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface heat transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.
Skip Nav Destination
Article navigation
June 2001
Technical Papers
Direct Numerical Simulation of Flow and Heat Transfer From a Sphere in a Uniform Cross-Flow
P. Bagchi,
P. Bagchi
Department of Theoretical & Applied Mechanics, University of Illinois, Urbana, IL 61801-2935
Search for other works by this author on:
M. Y. Ha,
M. Y. Ha
School of Mechanical Engineering, Pusan National University, South Korea
Search for other works by this author on:
S. Balachandar
S. Balachandar
Department of Theoretical & Applied Mechanics, University of Illinois, Urbana, IL 61801-2935
Search for other works by this author on:
P. Bagchi
Department of Theoretical & Applied Mechanics, University of Illinois, Urbana, IL 61801-2935
M. Y. Ha
School of Mechanical Engineering, Pusan National University, South Korea
S. Balachandar
Department of Theoretical & Applied Mechanics, University of Illinois, Urbana, IL 61801-2935
Contributed by the Fluids Engineering Division for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division January 10, 2000; revised manuscript received November 17, 2000. Associate Editor: D. R. Williams.
J. Fluids Eng. Jun 2001, 123(2): 347-358 (12 pages)
Published Online: November 17, 2000
Article history
Received:
January 10, 2000
Revised:
November 17, 2000
Citation
Bagchi, P., Ha, M. Y., and Balachandar, S. (November 17, 2000). "Direct Numerical Simulation of Flow and Heat Transfer From a Sphere in a Uniform Cross-Flow ." ASME. J. Fluids Eng. June 2001; 123(2): 347–358. https://doi.org/10.1115/1.1358844
Download citation file:
Get Email Alerts
Switching Events of Wakes Shed From Two Short Flapping Side-by-Side Cylinders
J. Fluids Eng (May 2025)
Related Articles
Flow Past a Sphere With Surface Blowing and Suction
J. Fluids Eng (December,2007)
An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers
J. Heat Transfer (November,2009)
The Effect of Uniform Blowing on the Flow Past a Circular Cylinder
J. Fluids Eng (June,2002)
Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes
J. Heat Transfer (May,2000)
Related Proceedings Papers
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Computational Modeling of Dynamic Planing Forces
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Extended Surfaces
Thermal Management of Microelectronic Equipment