Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various Reynolds numbers has been carried out to investigate the Reynolds number dependence. The Reynolds number is set to be Reτ=180, 395, and 640, where Reτ is the Reynolds number based on the friction velocity and the channel half width. The computation has been executed with the use of the finite difference method. Various turbulence statistics such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms, two-point correlation coefficients, and energy spectra are obtained and discussed. The present results are compared with the ones of the DNSs for the turbulent boundary layer and the plane turbulent Poiseuille flow and the experiments for the channel flow. The closure models are also tested using the present results for the dissipation rate of the Reynolds normal stresses. In addition, the instantaneous flow field is visualized in order to examine the Reynolds number dependence for the quasi-coherent structures such as the vortices and streaks.

1.
Orszag
,
S. A.
, and
Patterson
,
G. S.
,
1972
, “
Numerical simulation of three-dimensional homogeneous isotropic turbulence
,”
Phys. Rev. Lett.
,
28
, pp.
76
79
.
2.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence statistics in fully developed turbulent channel flow at low Reynolds number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
3.
Kuroda, A., Kasagi, N., and Hirata, M., 1989, “A direct numerical simulation of the fully developed turbulent channel flow at a very low Reynolds number,” Int. Symp. Computational Fluid Dynamics, Nagoya, pp. 1174–1179.
4.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
,
1992
, “
Direct numerical simulation of passive scalar field in a turbulent channel flow
,”
ASME J. Heat Transfer
,
114
, pp.
598
606
.
5.
Kim, J., Moin, P., and Moser, R., 1990, The Diskette of Collaborative Testing of Turbulence Models, Bradshaw, P., ed., Stanford University.
6.
Antonia
,
R. A.
, and
Kim
,
J.
,
1994
, “
Low-Reynolds-number effects on near-wall turbulence
,”
J. Fluid Mech.
,
276
, pp.
61
80
.
7.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid
,”
Int. J. Heat and Fluid Flow
,
19
, pp.
482
491
.
8.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects
,”
Int. J. Heat and Fluid Flow
,
20
, pp.
196
207
.
9.
Kawamura, H., 1998, “Direct numerical simulation of turbulence by parallel computation,” Proc. 10th Int. Conf. Parallel CFD, pp. 19–21.
10.
Kawamura, H., Abe, H., and Matsuo, Y., 1999, “Direct numerical simulation of turbulence by parallel computation,” Parallel Computational Fluid Dynamics, Lin et al., eds., North-Holland, Amsterdam, pp. 3–9.
11.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct numerical simulation of turbulent channel flow up to Reτ=590,
Phys. Fluids
,
11
, pp.
943
945
.
12.
Laufer, J., 1951, “Investigation of turbulent flow in a two-dimensional channel,” NACA Rept., Vol. 1053, pp. 1247–1266.
13.
Hussain
,
A. K. M. F
, and
Reynolds
,
W. C.
,
1975
, “
Measurements in fully developed turbulent channel flow
,”
ASME J. Fluids Eng.
,
97
, pp.
568
580
.
14.
Kreplin
,
H. P.
, and
Eckelmann
,
H.
,
1979
, “
Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow
,”
Phys. Fluids
,
22
, pp.
1233
1239
.
15.
Johansson
,
A. V.
, and
Alfredsson
,
P. H.
,
1982
, “
On the structure of turbulent channel flow
,”
J. Fluid Mech.
,
122
, pp.
295
314
.
16.
Wei
,
T.
, and
Willmarth
,
W. W.
,
1989
, “
Reynolds-number effects on the structure of a turbulent channel flow
,”
J. Fluid Mech.
,
204
, pp.
57
95
.
17.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W.
,
1992
, “
Low-Reynolds-number effects in a fully developed turbulent channel flow
,”
J. Fluid Mech.
,
236
, pp.
579
605
.
18.
Nishino, K., and Kasagi, N., 1989, “Turbulence statistics measurement in a two-dimensional channel flow using a three-dimensional particle tracking velocimeter,” Proc. 7th Turbulent Shear Flows, Vol. 2, pp. 22.1.1–22.1.6.
19.
Nishino, K., and Kasagi, N., 1991, “On the quasi-coherent turbulence structures in the two-dimensional channel flow,” Proc. 8th Turbulent Shear Flows, Vol. 2, pp. 28.3.1–28.3.6.
20.
Moin
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical investigation of turbulent channel flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.
21.
Jime´nez, J., 1998, “The largest scales of turbulent wall flows,” Center for Turbulence Research Annual Research Briefs, pp. 137–154.
22.
Dukowics
,
J. K.
, and
Dvinsky
,
A. S.
,
1992
, “
Approximate factorization as a high order splitting for the implicit incompressible flow equations
,”
J. Comput. Phys.
,
102
, pp.
336
347
.
23.
Rai
,
M. M.
, and
Moin
,
P.
,
1991
, “
Direct simulation of turbulent flow using finite-difference schemes
,”
J. Comput. Phys.
,
96
, pp.
15
53
.
24.
Rai
,
M. M.
, and
Moin
,
P.
,
1993
, “
Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer
,”
J. Comput. Phys.
,
109
, pp.
169
192
.
25.
Gavrilakis
,
S.
,
1992
, “
Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct
,”
J. Fluid Mech.
,
244
, pp.
101
129
.
26.
Kawamura, H., 1994, “Direct numerical simulation of turbulence by finite difference scheme,” The Recent Developments in Turbulence Research, Z. S. Zhang and Y. Miyake, eds. International Academic Publishers, pp. 54–60.
27.
Suzuki
,
T.
, and
Kawamura
,
H.
,
1994
, “
Consistency of finite-difference scheme in direct numerical simulation of turbulence (in Japanese)
,”
Trans. JSME
,
60
–578B, pp.
3280
3286
.
28.
Schumann
,
U.
,
1975
, “
Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli
,”
J. Comput. Phys.
,
18
, pp.
376
404
.
29.
Kajishima
,
T.
,
1994
, “
Conservation properties of finite difference method for convection (in Japanese)
,”
Trans. JSME
,
60
–574B, pp.
2058
2063
.
30.
Morinishi, Y., 1995, “Conservative properties of finite difference scheme for incompressible flow,” Center for Turbulence Research Annual Research Briefs, pp. 121–132.
31.
Spalart
,
P. R.
,
1988
, “
Direct simulation of a turbulent boundary layer up to Rθ=1410,
J. Fluid Mech.
,
187
, pp.
61
98
.
32.
Dean
,
R. B.
,
1978
, “
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow
,”
ASME J. Fluids Eng.
,
100
, pp.
215
222
.
33.
Alfredsson
,
P. H.
, and
Johansson
,
A. V.
,
1988
, “
The fluctuating wall-shear stress and the velocity field in the viscous sublayer
,”
Phys. Fluids
,
31
, pp.
1026
1033
.
34.
Komminaho
,
J.
,
Lundbladh
,
A.
, and
Johansson
,
A. V.
,
1996
, “
Very large structures in plane turbulent Couette flow
,”
J. Fluid Mech.
,
320
, pp.
259
285
.
35.
Saddoughi
,
S. G.
, and
Veeravalli
,
S. V.
,
1994
, “
Local isotropy in turbulent boundary layers at high Reynolds number
,”
J. Fluid Mech.
,
268
, pp.
333
372
.
36.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
37.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
,”
J. Fluid Mech.
,
194
, pp.
15
44
.
38.
Launder
,
B. E.
, and
Reynolds
,
W. C.
,
1983
, “
Asymptotic near-wall stress dissipation rates in a turbulent flow
,”
Phys. Fluids
,
26
, p.
1157
1157
.
39.
Antonia
,
R. A.
,
Djenidi
,
L.
, and
Spalart
,
P. R.
,
1994
, “
Anisotropy of the dissipation tensor in a turbulent boundary layer
,”
Phys. Fluids
,
6
, pp.
2475
2479
.
40.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
,
4
, pp.
765
777
.
41.
Kim
,
J.
,
1989
, “
On the structure of pressure fluctuations in simulated turbulent channel flow
,”
J. Fluid Mech.
,
205
, pp.
421
451
.
42.
Robinson, S. K., 1991, “The kinematics of turbulent boundary layer structure,” NASA TM, 103859.
You do not currently have access to this content.