The electrostatic double layer (EDL) effect on the linear hydrodynamic stability of microchannel flows is investigated. It is shown that the EDL destabilizes the Poiseuille flow considerably. The critical Reynolds number decreases by a factor five when the non-dimensional Debye-Huckel parameter κ is around ten. Thus, the transition may be quite rapid for microchannels of a couple of microns heights in particular when the liquid contains a very small number of ions. The EDL effect disappears quickly for corresponding typically to channels of heights 400 μm or larger. These results may explain why significantly low critical Reynolds numbers have been encountered in some experiments dealing with microchannel flows.
Issue Section:
Technical Papers
1.
Gad-el-Hak
, M.
, 1999
, “The Fluid Mechanics of Microdevices
,” J. Fluids Eng.
, 121
, pp. 5
–33
.2.
Tardu, S., 2003, “Transferts thermiques dans les microcanaux,” Traite´ EGEM, Tome 6 Ch. 6, Microfluidique, 36p., Herme`s.
3.
Peng
, X. F.
, Peterson
, G. P.
, and Wang
, B. X.
, 1994
, “Heat Transfer Characteristics of Water Flowing through Microchannels
,” Exp. Heat Transfer
, 7
, 265
–283
.4.
Wang
, B. X.
, and Peng
, X. F.
, 1994
, “Experimental Investigation on Liquid Forced Convection Heat Transfer through Microchannels
,” Int. J. Heat Mass Transfer
, 37
, 73
–82
.5.
Ren
, L.
, Qu
, W.
, and Li
, D.
, 2001
, “Interfacial Electrokinetic Effects on Liquid Flow in Microchannels
,” Int. J. Heat Mass Transfer
, 44
, 3125
–3134
.6.
Mala
, G. M.
, Li
, D.
, and Dale
, J. D.
, 1997
, “Heat Transfer and Fluid Flow in Microchannels
,” Int. J. Heat Mass Transfer
, 40
(13
), 3079
–3088
.7.
Von Kerczek
, C. H.
, 1982
, “The Instability of Oscillatory Poiseuille Flow
,” J. Fluid Mech.
, 116
, 91
–114
.8.
Orszag
, S. A.
, 1971
, “Accurate Solution of Orr-Somerfeld Stability Equation
,” J. Fluid Mech.
, 50
, 689
–703
.9.
Grosch
, C. E.
, and Salwen
, H.
, 1968
, “The Stability of Steady and Time-dependent Plane Poiseuille Flow
,” J. Fluid Mech.
, 34
, pp. 177
–205
.10.
Drazin, P. G., and Reid, W. H., 1981, Hydrodynamic Stability, Cambridge University Press, Cambridge, UK, pp. 370–464.
11.
Orszag
, S. A.
, and Patera
, A. T.
, 1983
, “Secondary Instability of Wall-Bounded Shear Flows
,” J. Fluid Mech.
, 128
, pp. 347
–385
.12.
Henningson
, D. S.
, and Kim
, J.
, 1991
, “On Turbulent Spots in Plane Poiseuille Flow
,” J. Fluid Mech.
, 228
, pp. 183
–205
.13.
Itoh
, N.
, 1974
, “Spatial Growth of Finite Wave Disturbances in Parallel and Nearly Parallel Flows. Part 1: The Theoretical Analysis and the Numerical Results for Plane Poiseuille Flow
,” Transactions of the Japan Society of Aeronautics and Space Sciences
, 17
, 160
–174
.14.
Stuart
, J. T.
, 1960
, “On the Nonlinear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows. Part 1: The Basic Behavior in Plane Poiseuille Flow
,” J. Fluid Mech.
, 9
, 353
–370
.15.
Mala
, G. M.
, and Li
, D.
, 1999
, “Flow Characteristics of Water in Microtubes
,” Int. J. Heat Fluid Flow
, 20
, 142
–148
.16.
Yang
, C.
, and Li
, D.
, 1997
, “Electrokinetic Effects on Pressure-driven Liquid Flows in Rectangular Microchannels
,” J. Colloid Interface Sci.
, 194
, 95
–107
.17.
Yang
, C.
, and Li
, D.
, 1998
, “Analysis of Electrokinetic Effects on the Liquid Flow in Rectangular Microchannels
,” Colloids Surf.
, 143
, 339
–353
.18.
Gao
, P.
, Le Person
, S.
, and Favre Marinet
, M.
, 2002
, “Scale effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels
,” Int. J. Therm. Sci.
, 41
, p. 10
10
.19.
Qu
, W.
, Mala
, G. M.
, Li
, D.
, 2000
, “Pressure-driven Water Flows in Trapezoidal Silicon Microchannels
,” Int. J. Heat Mass Transfer
, 43
, 353
–364
.Copyright © 2004
by ASME
You do not currently have access to this content.