The kinetic theory developed in [1] for solutions of nonhomogeneous nematic liquid crystalline polymers (LCPs) of spheroidal molecular configurations is extended to account for the translational diffusion and the related spatial density variation. The new theory augments the effect of the density variation to the intermolecular potential, Smoluchowski equation and the elastic stress. It accounts for the molecular aspect ratio as well as the finite range molecular interaction so that it is applicable to liquid crystals ranging from rodlike liquid crystals at large aspect ratios to discotic ones at small aspect ratios. It also exhibits enhanced shape effects in the viscous stress and warrants a positive entropy production, thereby, the second law of thermodynamics. Moment averaged, approximate, mesoscopic theories for complex flow simulations are obtained via closure approximations. In the limit of weak distortional elasticity, weak translational diffusion, and weak flows, the theory yields the torque balance equation of the well-known Ericksen-Leslie theory.

1.
Wang
,
Q.
,
2002
, “
A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configuration
,”
J. Chem. Phys.
,
116
,
9120
9136
.
2.
Chandrasekhar, S., 1992, “Liquid Crystals, 2nd ed.,” Cambridge University Press, Cambridge.
3.
de Gennes, P. G., and Prost, J., 1993, “The Physics of Liquid Crystals,” Oxford University Press.
4.
Leslie
,
F. M.
,
1979
, “
Theory of Flow Phenomena in Liquid Crystals
,”
Adv. Liq. Cryst.
,
4
,
1
81
.
5.
Doi, M., and Edwards, S. F., 1986, “The Theory of Polymer Dynamics,” Oxford U. Press (Clarendon), London-New York.
6.
Hand
,
G. L.
,
1962
, “
A theory of anisotropic fluids
,”
J. Fluid Mech.
,
13
,
33
46
.
7.
Beris, A. N., and B. J. Edwards, B. J., 1994, “Thermodynamics of Flowing Systems with Internal Microstructure,” Oxford Science Publications, New York.
8.
Tsuji
,
T.
, and
Rey
,
A. D.
,
1997
, “
Effect of long range order on sheared liquid crystalline polymers, Part 1: compatibility between tumbling behavior and fixed anchoring
,”
J. Non-Newtonian Fluid Mech.
,
73
,
127
152
.
9.
Carlsson
,
T.
,
1982
, “
The possibility of the existence of a positive Leslie viscosity α2. Proposed flow behavior of disk-like nematic liquid crystals
,”
Mol. Cryst. Liq. Cryst.
,
89
,
57
66
.
10.
Wang
,
L.
, and
Rey
,
A. D.
,
1997
, “
Pattern formation and non-linear phenomena in stretched discotic liquid crystal fibres
,”
Liq. Cryst.
,
23
(
1
),
93
112
.
11.
Singh
,
A. P.
, and
Rey
,
A. D.
,
1998
, “
Microstructure constitutive equation for discotic nematic liquid crystalline materials
,”
Rheol. Acta
,
37
,
30
45
.
12.
Isihara
,
A.
,
1951
, “
Theory of anisotropic colloidal solutions
,”
J. Chem. Phys.
,
19
(
9
),
1142
1153
.
13.
Colot
,
J. L.
,
Wu
,
X. G.
,
Xu
,
H.
, and
Baus
,
M.
,
1988
, “
Density-functional, Landau, and Onsager theories of the isotropic-nematic transition of hard ellipsoids
,”
Phys. Rev. A
,
38
(
4
),
2022
2036
.
14.
Takserman-Krozer
,
R.
, and
Ziabicki
,
A.
,
1963
,
J. Polym. Sci., Part A: Gen. Pap.
,
1
,
491
516
.
15.
Helfrich
,
W.
,
1970
, “
Helical bilayer structures due to spontaneous torsion of the edges
,”
J. Chem. Phys.
,
53
(
6
),
2267
2281
.
16.
Kuzuu
,
N.
, and
Doi
,
M.
,
1983
, “
Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation
,”
J. Phys. Soc. Jpn.
52
(
10
),
3486
3494
.
17.
Baalss
,
D.
, and
Hess
,
S.
,
1988
, “
Viscosity coefficients of oriented nematic and nematic discotic liquid crystals; Affine transformation model
,”
Z. Naturforsch.
,
43a
,
662
662
.
18.
Marrucci
,
G.
, and
Greco
,
F.
,
1991
, “
The elastic constants of Maier-Saupe rodlike molecular nematics
,”
Mol. Cryst.
,
206
,
17
30
.
19.
Jeffrey
,
G. B.
,
1922
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
,
102
,
161
179
.
20.
Feng
,
J.
,
Sgalari
,
G.
, and
Leal
,
L. G.
,
2000
, “
A theory for flowing nematic polymers with orientational distortion
,”
J. Rheol.
,
44
(
5
),
1085
1101
.
21.
Batchelor
,
G. K.
,
1970
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
,
41
(
3
),
545
570
.
22.
Hinch
,
E. J.
, and
Leal
,
L. G.
,
1972
, “
The effect of Brownian motion on the rhological properties of a suspension of non-spherical particles
,”
J. Fluid Mech.
,
52
(
4
),
683
712
.
23.
Hinch
,
E. J.
, and
Leal
,
L. G.
,
1973
, “
Time-dependent shear flows of a suspension of particles with weak Brownian rotations
,”
J. Fluid Mech.
,
57
(
4
),
753
767
.
24.
Hinch
,
E. J.
, and
Leal
,
L. G.
,
1976
, “
Constitutive equations in suspension mechanics,” part 2
, “Approximate forms for a suspension of rigid particles affected by Browian rotations,”
J. Fluid Mech.
,
76
(
1
),
187
208
.
25.
Bird, B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Polymeric Liquids, vol 1 and 2, John Wiley and Sons, New York.
26.
Feng
,
J.
,
Chaubal
,
C. V.
, and
Leal
,
L. G.
,
1998
, “
Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers
,”
J. Rheol.
,
42
,
1095
1119
.
27.
Chaubal
,
C. V.
,
Leal
,
L. G.
, and
Fredrickson
,
G. H.
,
1995
, “
A comparison of closure approximations for the Doi theory of LCPs
,”
J. Rheol.
,
39 pp
,
73
103
.
28.
Wang
,
Q.
,
1997
, “
Biaxial steady states and their stability in shear flows of liquid crystal polymers
,”
J. Rheol.
,
41
(
5
),
943
970
.
29.
Wang
,
Q.
,
1997
, “
Comparative studies on closure approximations in flows of liquid crystal polymers: I. elongational flows
,”
J. Non-Newtonian Fluid Mech.
,
72
,
141
162
.
You do not currently have access to this content.