This investigation analyzes the calibration nonlinearity of the ball-in-vortex flow-meter, designed to work on the principle of a rotating sphere in and due to a vortex flow. The comparison of this flow-meter reading with the standard flow-meter indicates the existence of different calibration regimes, bifurcated by a sharp change in slope of the calibration curve. Based on the governing mechanics of this flow-meter, this paper explains this nonlinearity, and proposes its mathematical form. In particular, the bifurcation in calibration characteristics is attributed to the change in the surface contact frictional force, due to translation of the ball. The mathematical model captures the various calibration regimes associated with this translation, from one plane of rotation in the flow-meter to another, or from one periphery to another. Thus, calibration nonlinearity of this flow-meter can be fully comprehended through its governing mechanics, and harnessed for flow measurement.

1.
Arndt
,
R. A.
, 1983, “
What do we Measure and Why
?” in
Fluid Mechanics Measurements
,
R. J.
Goldstein
, ed.,
Hemisphere
, Washington.
2.
Lee
,
W. F. Z.
,
Blakeslee
,
D. C.
, and
White
,
R. V.
, 1982, “
A Self-Correcting and Self-Checking Gas Turbine Meter
,”
ASME J. Fluids Eng.
0098-2202,
104
(
2
), pp.
143
149
.
3.
Preobrazhensky
,
V. P.
, 1980,
Measurements and Instrumentation in Heat Engineering
,
Mir
, Moscow, Vol.
2
, pp.
178
181
.
4.
Barkla
,
H. M.
, and
Auchterlonie
,
L. J.
, 1971, “
The Magnus or Robins Effect on Rotating Spheres
,”
J. Fluid Mech.
0022-1120,
47
, pp.
437
447
.
5.
Oesterle
,
B.
, and
Dinh
,
T. B.
, 1998, “
Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds numbers
,”
Exp. Fluids
0723-4864,
25
(
1
), pp.
16
22
.
6.
Roshko
,
A.
, 1954, “
On the Development of Turbulent Wakes from Vortex Streets
,” NACA Report No. 1191.
7.
Floberg
,
L.
, 1968, “
On the Ball Flowmeter and the Ball Viscosimeter
,”
Acta Polytech. Scand.
, Ser.ME, p.
28
.
8.
Kwok
,
C. K.
,
Lee
,
P. M.
, and
Lin
,
S.
, 1975, “
An Analytical Investigation of a Vortex Flowmeter
,”
ISA Trans.
0019-0578,
14
(
2
), pp.
167
171
.
9.
Komarov
,
Y. A.
,
Shonin
,
L. N.
,
Veyalis
,
N. P.
, and
Fomina
,
V. I.
, 1981, “
Industrial Ball Flowmeters for General Use, of the Types ‘Saturn’ and SHRT
,”
Prib. Sist. Upr.
0032-8154,
6
, pp.
13
15
.
10.
Bourrier
,
P.
,
Guyon
,
E.
, and
Jorre
,
J. P.
, 1984, “
The ‘Pop Off’ Effect: Different Regimes of a Light Ball in Water
,”
Eur. J. Phys.
0143-0807,
5
(
4
), pp.
225
231
.
11.
Ivanov
,
I. N.
, and
Zolotarevskii
,
S. A.
, 1985, “
Tachometric Flowmeter with Hydrodynamic Suspension of Ball Rotors
,”
Prib. Sist. Upr.
0032-8154,
12
, pp.
17
18
.
12.
Arenas
,
A.
,
Victoria
,
L.
, and
Luna
,
T.
, 1989, “
A Digital Circuit for Measuring Small Flows
,”
Am. J. Phys.
0002-9505,
57
(
12
), pp.
1153
1154
.
13.
Kurose
,
R.
, and
Komori
,
S.
, 1999, “
Drag and Lift Forces on a Rotating Sphere in Laminar Shear Flows
,”
J. Fluid Mech.
0022-1120,
384
, pp.
183
206
.
14.
Shonin
,
L. N.
,
Konoplev
,
J. S.
,
Komarov
,
J. A.
,
Ivanov
,
I. N.
,
Slin
,
M. D.
,
Vevalis
,
N. P.
, and
Karpinskaya
,
V. B.
, 1969, “
Flowmeter
,” U.S. Patent No. 3 443 432 [Original USSR Patent No. 1 065 760].
You do not currently have access to this content.