This paper describes the combined use of controlled nanoassembly and microfabrication (photolithography) to construct multi-walled, carbon, nanotube-based fluidic devices. The nanoassembly technique utilizes dielectrophoresis to position individual nanotubes across the gap between two electrodes patterned on a wafer. The dielectrophoretic migration process was studied theoretically and experimentally. Once a tube had been trapped between a pair of electrodes, photoresist was spun over the wafer and developed to form microfluidic interfaces. Liquid condensation in and evaporation from the nanotubes were observed with optical microscopy. The nanotube-based fluidic devices can be used for studies of fluid transport under extreme confinement and as sensitive sensors.

1.
Riegelman
,
M.
,
Liu
,
H.
,
Evoy
,
S.
, and
Bau
,
H. H.
, 2004, “
Nanofabrication of Carbon Nanotube (CNT) Based Fluidic Device
,”
Proceedings of NATO-ASI Nanoengineered Nanofibrous Materials
,
S.
Guceri
,
V.
Kutznetsov
, and
Y.
Gogotsi
, Eds.,
Kluwer
, The Netherlands, pp.
407
414
.
2.
Riegelman
,
M.
, 2004, “
Dielectrophoretic Assembly and Integration of Nanofluidic Devices
,” M.S. thesis, The University of Pennsylvania.
3.
Evoy
,
S.
,
DiLello
,
N.
,
Deshpande
,
V.
,
Narayanan
,
A.
,
Liu
,
H.
,
Riegelman
,
M.
,
Martin
,
R. R.
,
Hailer
,
B.
,
Bradley
,
J. -C.
,
Weiss
,
W.
,
Mayer
,
T. S.
,
Gogotsi
,
Y.
,
Bau
,
H. H.
,
Mallouk
,
T. E.
, and
Raman
,
S.
, 2004, “
Dielectrophoretic Assembly and Integration of Nanowire Devices with Functional CMOS Operating Circuitry
,”
Microelectron. Eng.
0167-9317,
75
(
1
), pp.
31
42
.
4.
Pohl
,
H. A.
, 1978,
Dielectrophoresis: The Behavior of Neutral Matter in Non-uniform Electric Fields
,
Cambridge University Press
, New York.
5.
Jones
,
T. B.
, 1995,
Electromechanics of Particles
,
Cambridge University Press
, New York.
6.
Yamamoto
,
K.
,
Akita
,
S.
, and
Nakayama
,
Y.
, 1998, “
Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis
,”
J. Phys. D
0022-3727,
31
, pp.
L34
L36
.
7.
Chung
,
J.
,
Lee
,
K. -H.
,
Lee
,
J.
, and
Ruoff
,
R. S.
, 2004, “
Toward Large-Scale Integration of Carbon Nanotubes
,”
Langmuir
0743-7463,
20
, pp.
3011
3017
.
8.
Bradley
,
J. -C.
,
Babu
,
S.
,
Ndungu
,
S.
,
Nikitin
,
P.
, and
Gogotsi
,
Y.
, 2004, “
Nanotube Synthesis Using Alumina Template
,” SMIRP Bradley Research Lab Knowledge Product 10975_0004.
9.
Rossi
,
M. P.
,
Ye
,
H.
,
Gogotsi
,
Y.
,
Babu
,
S.
,
Ndungu
,
P.
, and
Bradley
,
J. -C.
, 2004, “
Environmental Scanning Electron Microscopy Study of Water in Carbon Nanopipes
,”
Nano Lett.
1530-6984,
4
(
5
), pp.
989
993
.
10.
Kim
,
B. M.
,
Sinha
,
S.
, and
Bau
,
H. H.
, 2004, “
Optical Microscope Study of Liquid Transport in Carbon Nanotubes
,”
Nano Lett.
1530-6984,
4
(
11
), pp.
2203
2208
.
11.
Morse
,
P. M.
, and
Feshbach
,
H.
, 1953,
Methods of Theoretical Physics
,
McGraw-Hill
, New York.
12.
Liu
,
H.
, and
Bau
,
H. H.
, 2004, “
Dielectrophoresis of Cylindrical and Spherical Particles Submerged in Shells and in Semi-Infinite Media
,”
Phys. Fluids
1070-6631,
16
(
5
), pp.
1217
1228
.
13.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
, New York.
14.
Blake
,
J. R.
, 1974, “
Singularities of Viscous Flow
,”
J. Eng. Math.
0022-0833,
8
, pp.
113
124
.
15.
De Mestre
,
N. J.
, and
Russel
,
W. B.
, 1975, “
Low Reynolds Number Translation of a Slender Cylinder Near a Plane Wall
,”
J. Eng. Math.
0022-0833,
9
, pp.
81
91
.
You do not currently have access to this content.