The swirling flows of water and CTAC (cetyltrimethyl ammonium chloride) surfactant solutions (50-1000ppm) in an open cylindrical container with a rotating disc at the bottom were experimentally investigated by use of a double-pulsed PIV (particle image velocimetry) system. The flow pattern in the meridional plane for water at the present high Reynolds number of 4.3×104 differed greatly from that at low Reynolds numbers, and an inertia-driven vortex was pushed to the corner between the free surface and the cylindrical wall by a counter-rotating vortex caused by vortex breakdown. For the 1000ppm surfactant solution flow, the inertia-driven vortex located at the corner between the bottom and the cylindrical wall whereas an elasticity-driven reverse vortex governed the majority of the flow field. The rotation of the fluid caused a deformation of the free surface with a dip at the center. The dip was largest for the water case and decreased with increasing surfactant concentration. The value of the dip was related to determining the solution viscoelasticity for the onset of drag reduction.

1.
Li
,
F. C.
,
Wang
,
D. Z.
,
Kawaguchi
,
Y.
, and
Hishida
,
K.
, 2004, “
Simultaneous Measurement of Velocity and Temperature Fluctuations in Thermal Boundary Layer in a Drag-Reducing Surfactant Solution Flow
,”
Exp. Fluids
0723-4864,
36
, pp.
131
140
.
2.
Yu
,
B.
,
Li
,
F. C.
, and
Kawaguchi
,
Y.
, 2004, “
Numerical and Experimental Investigation of Turbulent Characteristics in a Drag-Reducing Flow With Surfactant Additives
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
961
974
.
3.
Nowak
,
M.
, 2003, “
Time-Dependent Drag Reduction and Ageing in Aqueous Solutions of a Cationic Surfactant
,”
Exp. Fluids
0723-4864,
34
, pp.
397
402
.
4.
Elson
,
T. P.
, and
Garside
,
J.
, 1983, “
Drag Reduction in Aqueous Cationic Soap Solutions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
12
, pp.
121
133
.
5.
Ohlendorf
,
D.
,
Interthal
,
W.
, and
Hoffmann
,
H.
, 1986, “
Surfactant Systems for Drag Reduction: Physico-Chemical Properties and Rheological Behavior
,”
Rheol. Acta
0035-4511,
25
, pp.
468
486
.
6.
Rehage
,
H.
,
Wunderlich
,
I.
, and
Hoffmann
,
H.
, 1986, “
Shear Induced Phase Transitions in Dilute Aqueous Surfactant Solution
,”
Prog. Colloid Polym. Sci.
0340-255X,
72
, pp.
51
59
.
7.
Rose
,
G. D.
, and
Foster
,
K. L.
, 1989, “
Drag Reduction and Rheological Properties of Cationic Viscoelastic Surfactant Formulations
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
31
, pp.
59
85
.
8.
Bewersdorff
,
H. W.
, and
Thiel
,
H.
, 1993, “
Turbulence Structure of Dilute Polymer and Surfactant Solution in Artificially Roughened Pipes
,”
Appl. Sci. Res.
0003-6994,
50
, pp.
347
368
.
9.
Siginer
,
A.
, 1984, “
General Weissenberg Effect in Free Surface Rheometry, Part I: Analytical Consideration
,”
ZAMP
0044-2275,
35
, pp.
545
558
.
10.
Siginer
,
A.
, 1984, “
General Weissenberg Effect in Free Surface Rheometry, Part II: Experiments
,”
ZAMP
0044-2275,
35
, pp.
618
633
.
11.
Siginer
,
A.
, 1984, “
Free Surface on a Simple Fluid Between Rotating Eccentric Cylinders, Part I: Analytical Solution
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
15
, pp.
93
108
.
12.
Siginer
,
A.
, and
Beavers
,
G. S.
, 1984, “
Free Surface on a Simple Fluid Between Rotating Eccentric Cylinders. Part II: Experiments
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
15
, pp.
109
126
.
13.
Siginer
,
A.
, 1991, “
Viscoelastic Swirling Flow With Free Surface in Cylindrical Chambers
,”
Rheol. Acta
0035-4511,
30
, pp.
159
174
.
14.
Bien
,
F.
, and
Penner
,
S. S.
, 1970, “
Velocity Profiles in Steady and Unsteady Rotating Flows for a Finite Cylindrical Geometry
,”
Phys. Fluids
0031-9171,
13
, pp.
1665
1671
.
15.
Hill
,
C. T.
, 1972, “
Nearly Viscometric flow of Viscoelastic Fluids in the Disk and Cylindrical System, II: Experimental
,”
Trans. Soc. Rheol.
0038-0032,
16
, pp.
213
245
.
16.
Escudier
,
M. P.
, 1984, “
Observations of the Flow Produced in a Cylindrical Container by a Rotating End Wall
,”
Exp. Fluids
0723-4864,
2
, pp.
189
196
.
17.
Fujimura
,
K.
,
Koyama
,
H. S.
, and
Hyun
,
J. M.
, 1997, “
Time Dependent Vortex Breakdown in a Cylinder With a Rotating Lid
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
450
453
.
18.
Ogino
,
F.
,
Kawai
,
K.
,
Dohmoto
,
T.
, and
Takahashi
,
T.
, 1999, “
Velocity Distribution of the Flow in a Rotating Cylindrical Container With a Rotating Disc at the Liquid Surface
,”
Kagaku Kogaku Ronbunshu
0386-216X,
25
, pp.
29
36
.
19.
Bohme
,
G.
,
Rubart
,
L.
, and
Stenger
,
M.
, 1992, “
Vortex Breakdown in Shear-Thinning Liquids: Experiment and Numerical Simulation
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
45
, pp.
1
20
.
20.
Day
,
C.
,
Harris
,
J. A.
,
Soria
,
J.
,
Boger
,
D. V.
, and
Welsh
,
M. C.
, 1996, “
Behavior of an Elastic Fluid in Cylindrical Swirling Flows
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
250
255
.
21.
Escudier
,
M. P.
, and
Cullen
,
L. M.
, 1996, “
Flow of Shear-Thinning Liquid in a Cylindrical Container With a Rotating End Wall
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
381
384
.
22.
Xue
,
S. C.
,
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1999, “
Fully Three-Dimensional, Time-Dependent Numerical Simulations of Newtonian and Viscoelastic Swirling Flows in a Confined Cylinder-Part I. Method and Steady Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
87
, pp.
337
367
.
23.
Bowen
,
P. J.
,
Davies
,
A. R.
, and
Walters
,
K.
, 1991, “
On Viscoelastic Effects in Swirling Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
38
, pp.
113
126
.
24.
Siginer
,
D. A.
, 2004, “
On the Nearly Viscometric Torsional Motion of Viscoelastic Liquids Between Shrouded Rotating Disks
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
305
313
.
25.
Stokes
,
J. R.
,
Graham
,
L. J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids. Part 1. Interaction Between Inertia and Elasticity
,”
J. Fluid Mech.
0022-1120,
429
, pp.
67
115
.
26.
Stokes
,
J. R.
,
Graham
,
L. J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids. Part 2. Elastic Effects
,”
J. Fluid Mech.
0022-1120,
429
, pp.
67
115
.
27.
Goller
,
H.
, and
Ranov
,
T.
, 1968, “
Unsteady Rotating Flow in a Cylinder With Free Surface
,”
J. Basic Eng.
0021-9223,
90
, pp.
445
454
.
28.
Arora
,
K.
,
Sureshkumar
,
R.
,
Scheiner
,
M. P.
, and
Piper
,
J. L.
, 2002, “
Surfactant-Induced Effects on Turbulent Swirling Flows
,”
Rheol. Acta
0035-4511,
41
, pp.
25
34
.
29.
Spohn
,
A.
,
Mory
,
M.
, and
Hopfinger
,
E. J.
, 1993, “
Observation of Vortex Breakdown in an Open Cylindrical Container With a Rotating Bottom
,”
Exp. Fluids
0723-4864,
14
, pp.
70
77
.
30.
Bohme
,
G.
,
Voss
,
R.
, and
Warnercke
,
W.
, 1985, “
Die Frei Oberflache Einer Flussigkeit Uber Einer Rotierenden Scheibe
,”
Rheol. Acta
0035-4511,
24
, pp.
22
23
.
31.
Siginer
,
D. A.
, and
Knight
,
R. W.
, 1993, “
Swirling Free Surface Flow in Cylindrical Containers
,”
J. Eng. Math.
0022-0833,
27
, pp.
245
264
.
32.
Siginer
,
D. A.
, 1989, “
Free Surface on a Viscoelastic Liquid in a Cylinder with Spinning Bottom
,”
Macromol. Chem.
,
23
, pp.
73
90
.
33.
Siginer
,
D. A.
, 1986, “
Torsional Oscillations of a Rod in a Layered Medium of Simple Fluids
,”
Int. J. Eng. Sci.
0020-7225,
24
, pp.
631
640
.
34.
Kawaguchi
,
Y.
,
Wei
,
J. J.
,
Yu
,
B.
, and
Feng
,
Z. P.
, 2003, “
Rheological Characterization of Drag-Reducing Cationic Surfactant Solution: Shear and Elongational Viscosities of Dilute Solution
,” in
Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
,
Honolulu, Hawaii
.
35.
Yu
,
B.
,
Wei
,
J. J.
, and
Kawaguchi
,
Y.
, 2004, “
Swirling Flow of a Viscoelastic Fluid With Free Surface, Part II: Numerical Analysis With Extended Marker-and-Cell Method
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
77
87
.
36.
Giesekus
,
H.
, 1982, “
A Simple Constitutive Equation for Polymer Fluids Based on the Concept Deformation-Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
11
, pp.
69
109
.
You do not currently have access to this content.