Two-dimensional and quasi-3D in-flight ice accretion simulation codes have been widely used by the aerospace industry for the last two decades as an aid to the certification process. The present paper proposes an efficient numerical method for calculating ice shapes on simple or complex 3D geometries. The resulting ice simulation system, FENSAP-ICE, is built in a modular fashion to successively solve each flow, impingement and accretion via field models based on partial differential equations (PDEs). The FENSAP-ICE system results are compared to other numerical and experimental results on 2D and slightly complex 3D geometries. It is concluded that FENSAP-ICE gives results in agreement with other code calculation results, for the geometries available in the open literature.

1.
Messinger
,
B. L.
, 1953, “
Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed
,”
J. Aeronaut. Sci.
0095-9812,
20
, pp.
29
42
.
2.
MacArthur
,
C. D.
, 1983, “
Numerical Simulation of Airfoils Ice Accretion
,” AIAA Paper No. 83-0112.
3.
Ruff
,
G. A.
, and
Berkowitz
,
M.
, 1990, “
Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)
,” NASA Contractor Report No. 185129.
4.
Hedde
,
T.
, and
Guffond
,
D.
, 1995, “
ONERA Three-Dimensional Icing Model
,”
AIAA J.
0001-1452,
33
(
6
), pp.
1038
1045
.
5.
Gent
,
R. W.
, 1990, “
TRAJICE2, A Combined Water Droplet and Ice Accretion Prediction Program for Aerofoil
,” DRA Technical Report No. TR90054.
6.
Tran
,
P.
,
Brahimi
,
M. T.
, and
Paraschivoiu
,
I.
, 1994, “
Ice Accretion on Aircraft Wings with Thermodynamic Effects
,” AIAA Paper No. 94-0605.
7.
Bidwell
,
C.
,
Pinella
,
D.
, and
Garrison
,
P.
, 1999, “
Ice Accretion Calculation for a Commercial Transport Using the LEWICE3D, ICEGRID3D and CMARC Programs
,” AIAA Paper No. 99-0250.
8.
Baruzzi
,
G. S.
,
Habashi
,
W. G.
,
Guèvremont
,
G.
, and
Hafez
,
M. M.
, 1995, “
A Second Order Finite Element Method for the Solution of the Transonic Euler and Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
20
, pp.
671
693
.
9.
Bourgault
,
Y.
,
Habashi
,
W. G.
,
Dompierre
,
J.
, and
Baruzzi
,
G. S.
, 1999, “
A Finite Element Method Study of Eulerian Droplets Impingement Models
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
, pp.
429
449
.
10.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
, 2003, “
FENSAP-ICE’s Three-Dimensional In-flight Ice Accretion Module
,”
J. Aircr.
0021-8669,
40
(
2
), pp.
239
247
.
11.
Croce
,
G.
,
Beaugendre
,
H.
, and
Habashi
,
W. G.
, 2002, “
CHT3D: FENSAP-ICE Conjugate Heat Transfer Computations with Droplet Impingement and Runback Effects
,” AIAA Paper No. 2002-0386.
12.
Spalart
,
Ph. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
13.
Spalart
,
P. R.
, 2000, “
Trends in Turbulence Treatments
,” AIAA Paper No. 2000-2306.
14.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
, 2003, “
Roughness Implementation in FENSAP-ICE: Model Calibration and Influence on Ice Shapes
,”
J. Aircr.
0021-8669,
40
, pp.
1212
1215
.
15.
Beaugendre
,
H.
, 2003, “
A PDE-Based 3D Approach for In-Flight Ice Accretion
,” Ph.D. dissertation, McGill University, Montreal, QC, Canada.
16.
Habashi
,
W. G.
,
Dompierre
,
J.
,
Bourgault
,
Y.
,
Fortin
,
M.
, and
Vallet
,
M. -G.
, 1998, “
Certifiable Computational Fluid Dynamics Through Mesh Optimization,” Special Issue on Credible Computational Fluid Dynamics Simulation
,
AIAA J.
0001-1452,
36
(
5
), pp.
703
711
.
17.
Gresho
,
P. M.
,
Lee
,
R. L.
,
Sani
,
R. L.
,
Maslanik
,
M. K.
, and
Eaton
,
B. E.
, 1987, “
The Consistent Galerkin FEM for Computing Derived Boundary Quantities in Thermal and/or Fluid Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
7
, pp.
371
394
.
18.
Jackson
,
R.
, 2000,
The Dynamics of Fluidized Particles
,
Cambridge University Press
, Cambridge, Chap. 2.
19.
Hughes
,
T. J. R.
, and
Brooks
,
A.
, 1982, “
A Theoretical Framework for Petrov-Galerkin Methods with Discontinuous Weighting Functions: Application to the Streamline-Upwind Procedure
,”
Finite Element in Fluids
,
Gallagher
,
R. H.
,
Norrie
,
D. H.
,
Oden
,
J. T.
, and
Zienckiewicz
,
O. C.
, eds.,
Wiley
, New York, Vol.
4
, Chap. 3.
20.
Bourgault
,
Y.
,
Beaugendre
,
H.
, and
Habashi
,
W. G.
, 2000, “
Development of a Shallow Water Icing Model in FENSAP-ICE
,”
J. Aircr.
0021-8669,
37
, pp.
640
646
.
21.
Kays
,
W. M.
, and
Crawford
,
B. M.
, 1993, “
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
, New York.
22.
Wright
,
W. B.
, and
Rutkowski
,
A.
, 1999, “
Validation Results for LEWICE 2.0” and CD-ROM
.
23.
SAE Aerospace Recommended Practices, 2003, “
Droplet Impingement and Ice Accretion Computer Codes
,” ARP5903.
24.
Kind
,
R. J.
, “
Ice Accretion Simulation Evaluation Test
,” NATO RTO Technical Report No. 38, RTO-TR-038, France, November, 2001.
25.
Lepage
,
C. Y.
,
Suerich-Gulick
,
F.
, and
Habashi
,
W. G.
, 2002, “
Anisotropic 3D Mesh Adaptation on Unstructured Hybrid Meshes
,” AIAA Paper No. 2002-0859.
26.
Dompierre
,
J.
,
Vallet
,
M. -G.
,
Bourgault
,
Y.
,
Fortin
,
M.
, and
Habashi
,
W. G.
, 2002, “
Anisotropic Mesh Adaptation: Towards User-Independent, Mesh-Independent and Solver-Independent CFD Solutions: Part III: Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
, pp.
675
702
.
27.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
, Albuquerque, New Mexico, Chap. 5.
28.
Papadakis
,
M.
,
Elangonan
,
R.
,
Freund
,
G. A.
,
Breer
,
J. M.
,
Zumwalt
,
G. W.
, and
Whitmer
,
L.
, 1989, “
An Experimental Method for Measuring Water Droplet Impingement Efficiency on Two- and Three-Dimensional Bodies
,” NASA CR-4257, DOT/FAA/CT-87/22.
29.
Bidwell
,
C. S.
, 1996, “
Collection Efficiency and Ice Accretion Calculations for a Boeing 737-300 Inlet
,” SAE Paper No. 965570.
30.
Tran
,
P.
,
Benquet
,
P.
,
Baruzzi
,
G.
, and
Habashi
,
W. G.
, 2002, “
Design of Ice Protection Systems and Icing Certification Through Cost-Effective Use of CFD
,” AIAA Paper No. 2002-0382.
You do not currently have access to this content.