We investigate theoretically the periodic shear environment of a cone-and-plate bioreactor. The imposed frequency is designated to reflect the periodic nature of mammalian cardiac cycles. The working formula obtained for the distribution of shear stresses shall be of substantial interest for applying periodic shear stresses to cell cultures in vitro.
Issue Section:
Technical Papers
1.
Butler
, D. L.
, Goldstein
, S. A.
, and Guilak
, F.
, 2000, “Functional Tissue Engineering: The Role of Biomechanics
,” J. Biomech. Eng.
0148-0731, 122
, pp. 570
–575
.2.
Brown
, T. D.
, 2000, “Techniques for Mechanical Stimulation of Cells in vitro: A Review
,” J. Biomech.
0021-9290, 33
, pp. 3
–14
.3.
Bartling
, B.
, Tostlebe
, H.
, Darmer
, D.
, Holtz
, J.
, Silber
, R.-E.
, and Morawietz
, H.
, 2000, “Shear Stress-Dependent Expression of Apoptosis-Regulating Genes in Endothelial Cells
,” Biochem. Biophys. Res. Commun.
0006-291X, 278
, pp. 740
–746
.4.
Osanai
, T.
, Akutsu
, N.
, Fujita
, N.
, Nakano
, T.
, Takahashi
, K.
, Guan
, W.
, and Okumura
, K.
, 2001, “Cross Talk Between Prostacyclin and Nitric Oxide Under Shear in Smooth Muscle Cell: Role in Monocyte Adhesion
,” Am. J. Physiol. Heart Circ. Physiol.
0363-6135, 281
, pp. H177
–H182
.5.
Helmlinger
, G.
, Berk
, B. C.
, and Nerem
, R. M.
, 1995, “Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,” Am. J. Physiol.
0002-9513, 269
, pp. C367
–C375
.6.
Mooney
, M.
, and Ewart
, R. H.
, 1934, “The Conicylindrical Viscometer
,” Physics (N.Y.)
0092-8437, 5
, pp. 350
–354
.7.
Cox
, D. B.
, 1962, “Radial Flow in the Cone-Plate Viscometer
,” Nature (London)
0028-0836, 193
, p. 670
.8.
Pelech
, I.
, and Shapiro
, A. H.
, 1964, “Flexible Disk Rotating on a Gas Film Next to a Wall
,” ASME J. Appl. Mech.
0021-8936, 31
(57
), pp. 7
–584
.9.
Walters
, K.
, and Waters
, N. D.
, 1966, “Polymer Systems, Deformation and Flow
,” Proc. Brit. Soc. Rheol.
, R. E.
Wetton
and R. W.
Whorlow
eds., Macmillan
, pp. 211
–235
.10.
Cheng
, D. C.-H.
, 1968, “The Effect of Secondary Flow on the Viscosity Measurement Using a Cone-and-Plate Viscometers
,” Chem. Eng. Sci.
0009-2509, 23
, pp. 895
–899
.11.
Fewell
, M. E.
, and Hellum
, J. D.
, 1977, “The Secondary Flow of Newtonian Fluids in Cone-and-Plate Viscometers
,” Trans. Soc. Rheol.
0038-0032, 21
, pp. 535
–565
.12.
Turian
, R. M.
, 1972, “Perturbation Solution of the Steady Newtonian Flow in the Cone and Plate and Parallel Plate Systems
,” Ind. Eng. Chem. Fundam.
0196-4313, 11
, pp. 361
–368
.13.
Heuser
, G.
, and Krause
, E.
, 1979, “The Flow Field of Newtonian Fluids in Cone and Plate Viscometers With Small Gap Angles
,” Rheol. Acta
0035-4511, 18
, pp. 531
–564
.14.
Drasler
, W. J.
, Smith
, II C. M.
, and Keller
, K. H.
, 1987, “Viscoelasticity of Packed Erythrocyte Suspensions Subjected to Low Amplitude Oscillatory Deformation
,” Biophys. J.
0006-3495, 52
, pp. 357
–365
.15.
Turian
, R. M.
, 1977, “Oscillatory Motion in the Cone and Plate Perturbation Analysis of Secondary Flow Effects
,” Ind. Eng. Chem. Fundam.
0196-4313, 16
, pp. 348
–356
.16.
Sdougos
, H. P.
, Bussolari
, S. R.
, and Dewey
, C. F.
, 1984, “Secondary Flow and Turbulence in a Cone-and-Plate Device
,” J. Fluid Mech.
0022-1120, 138
, pp. 379
–404
.17.
Chung
, C. A.
, Tzou
, M. R.
, and Ho
, R. W.
, 2005, “Oscillatory Flow in a Cone-and-Plate Bioreactor
,” ASME J. Biomech. Eng.
0148-0731, 127
, pp. 601
–610
.18.
Freshney
, R. I.
, 2000, Culture of Animal Cells: A Manual of Basic Technique
, 4th ed., Wiley
, New York
, Chap. 8.19.
Bussolari
, S. R.
, Dewey
, C. F.
, and Gimbrone
, M. A.
, 1982, “An Aparatus for Subjecting Living Cells to Fluid Shear Stress
,” Rev. Sci. Instrum.
0034-6748, 53
, pp. 1851
–1854
.20.
Bender
, C. M.
, and Orszag
, S. A.
, 1999, Advanced Mathematical Methods for Scientists and Engineers
, Springer
, New York
, pp. 419
–430
.21.
Giddens
, D. P.
, Zarins
, C. K.
, and Glagov
, S.
, 1993, “The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,” J. Biomech. Eng.
0148-0731, 115
, pp. 588
–594
.22.
Barbee
, K. A.
, Mundel
, T.
, Lal
, R.
, and Davies
, P. F.
, 1995, “Subcellular Distribution of Shear Stress at the Surface of Flow-aligned and Nonaligned Endothelial Monolayers
,” Am. J. Physiol.
0002-9513, 268
, pp. H1765
–H1772
.23.
Yamaguchi
, T.
, Yamamoto
, Y.
, and Liu
, H.
, 2000, “Computational Mechanical Model Studies on the Spontaneous Emergent Morphogenesis of the Cultured Endothelial Cells
,” J. Biomech.
0021-9290, 33
, pp. 115
–126
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.