Abstract

A novel wind-tunnel facility has been designed for measurement of lift and drag on micromachined airfoils. The tunnel is designed to operate with pressures ranging from 0.15 to 1.0 atmosphere, over a velocity range of 30 to 100ms, allowing for independent control of Reynolds and Knudsen number. The tunnel is designed for testing of airfoils with chords of 10 to 100 microns, giving a range of Reynolds numbers from 10 to 600, with Knudsen numbers reaching 0.01. Due to the structural constraints of the airfoils being tested, the wind tunnel has a 1cm cross-section. This small size allows the use of a 100-1 contraction area, and extremely fine turbulence screens, creating a low turbulence facility. Computational fluid dynamics is used to show that an ultra-short 100-1 contraction provides uniform flow without separation, or corner vortices. Velocity data obtained with impact and hot-wire probes indicate uniform flow and turbulence intensities below 0.5%.

1.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 1998, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
579
612
.
2.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
3.
Lee
,
Y. L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2002, “
Pressure Loss in Constriction Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
236
244
.
4.
Karniadakis
,
G. E.
, and
Beskok
,
A.
, 2002,
Micro Flows: Fundamentals and Simulation
,
Springer-Verlag
, New York, Chap. 3.
5.
Gampert
,
B.
, 1978, “
Low Reynolds Number TAC-Slip Flow Past a Circular Cylinder
,”
Proceedings 11th Rarefied Gas Dynamics Symposium
.
6.
Lempert
,
W. R.
,
Jiang
,
N.
,
Sethuram
,
S.
, and
Samimy
,
M.
, 2002, “
Molecular Tagging Velocimetry Measurements in Supersonic Micro Jets
,”
AIAA J.
0001-1452,
40
(
6
), pp.
1065
1070
.
7.
Martin
,
M. J.
, and
Boyd
,
I. D.
, 2000, “
Blasius Boundary Layer Solution With Slip Flow Conditions
,”
Proceedings 22nd Rarefied Gas Dynamics Symposium
, AIP Conf. Proc., Melville, NY, Vol.
585
, pp.
518
253
.
8.
Sun
,
Q.
,
Boyd
,
I. D.
, and
Candler
,
G. V.
, 2002, “
Numerical Simulation of Gas Flow over Micro-Scale Airfoils
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
2
), pp.
171
179
.
9.
Martin
,
M. J.
,
Kurabayashi
,
K.
, and
Boyd
,
I. D.
, 2001, “
Measurement of Lift and Drag on MEMS Scale Airfoils in Slip Flow
,”
Proceedings of 2001 ASME FEDSM
. American Society of Mechanical Engineers, New York.
10.
Batchelor
,
G. K.
,
1953
,
Theory of Homogeneous Turbulence
,
Cambridge U. P.
, Cambridge, UK, Chap. 4.
11.
Uberoi
,
M. S.
, 1956, “
Effect of Wind-Tunnel Contraction on Free Stream Turbulence
,”
J. Aeronaut. Sci.
0095-9812,
23
(
8
), pp.
754
764
.
12.
Lumley
,
J. L.
, and
McMahon
,
J. F.
, 1967, “
Reducing Water Tunnel Turbulence by Means of a Honeycomb
,
ASME J. Basic Eng.
0021-9223, Series D,
89D
(
4
), pp.
764
770
.
13.
Lefebvre
,
A. H.
, 1998.
Gas Turbine Combustion
,
Taylor & Francis Group
, Philadelphia, PA.
14.
Mikhail
,
M. N.
, and
Rainbird
,
W. J.
, 1978, “
Optimum Design of Wind Tunnel Contractions
,” AIAA Paper No. 1978-819.
15.
FLUENT/UNS User’s Guide: Release 3.2. 1995, Fluent Inc., Lebanon, NH.
16.
Schlichting
,
H.
, 1999,
Boundary-Layer Theory
,
Springer-Verlag
, New York.
17.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
, New York.
18.
Holman
,
J. P.
, 2000,
Experimental Methods for Engineers
,
McGraw-Hill, Inc.
, New York.
You do not currently have access to this content.