Steady and unsteady shock boundary-layer interactions are studied numerically by solving the two-dimensional time-dependent Navier-Stokes equations. To validate the numerical method, the steady interaction is compared with measurements and other numerical results reported in the literature. The numerical study of the steady interaction leads to a suitable method for transpiration boundary conditions. The method applies to unsteady flows as well. Using the validated numerical method, we show that an unsteady shock boundary-layer interaction can occur in a supersonic flow over a flat plate subjected to suction and blowing from the opposite side of the plate, even though the imposed transpiration is steady. Depending on the Mach number, the Reynolds number, the distance of the transpiration boundary to the lower wall, and the transpiration profile, the unsteadiness can be inviscid or viscous dominated. The viscous effect is characterized by the occurrence of self-excited vortex shedding. A criterion for the onset of vortex shedding for internal compressible flows is also proposed.

1.
Ferri
,
A.
, 1940, “
Experimental Results with Airfoils Tested in the High-Speed Tunnel in Guidonia
,” NACA TM 946.
2.
Ackeret
,
J.
,
Feldmann
,
F.
, and
Rott
,
N.
, 1947, “
Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed
,” NACA TM 1113.
3.
Liepmann
,
H. W.
, and
Roshko
,
A.
, 1966,
Elements of Gasdynamics
,
J Wiley
, New York.
4.
Adamson
,
T. C.
, and
Messiter
,
A. F.
,
, 1980, “
Analysis of Two-Dimensional Interaction between Shock Waves and Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189
12
, pp.
103
138
.
5.
Delery
,
J.
, and
Marvin
,
J. G.
, 1986, “
Shock-Wave Boundary Layer Interactions
,” AGARDograph-AG-180.
6.
Tijdeman
,
H.
, and
Seebass
,
R.
, 1980, “
Transonic Flow Past Oscillating Airfoils
,”
Annu. Rev. Fluid Mech.
0066-4189
12
, pp.
181
222
.
7.
Degrez
,
G.
, 1981, “
Exploratory Experimental Investigation of the Unsteady Aspects of Blunt Fin-Induced Shock Wave Turbulent Boundary Layer Interactions
,” M.S.E. thesis, Mechanical and Aerospace Eng. Dept., Princeton Univ., Princeton, NJ.
8.
Dolling
,
D. S.
,
, 1993, “
Fluctuating Loads in Shock Wave/Turbulent Boundary Layer Interaction: Tutorial and Update
,” AIAA Paper No.
93
-
0284
.
9.
Loth
,
E.
, and
Matthys
,
M. W.
, 1995, “
Unsteady Low Reynolds Number Shock Boundary Layer Interactions
,”
Phys. Fluids
1070-6631
7
(
5
), pp.
1142
1150
.
10.
Thompson
,
K. W.
, 1987, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
0021-9991
68
, pp.
1
24
.
11.
Poinsot
,
T. J.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991
101
, pp.
104
129
.
12.
Wasistho
,
B.
,
Geurts
,
B. J.
, and
Kuerten
,
J. G. M.
, 1997, “
Spatial Simulation Techniques for Time-Dependent Compressible Flow over a Flat Plate
,”
Comput. Fluids
0045-7930
26
, pp.
713
739
.
13.
Vreman
,
A. W.
, 1995, “
Shocks in Direct Numerical Simulation of the Confined Three Dimensional Mixing Layer
,”
Phys. Fluids
1070-6631
7
, pp.
2105
2107
.
14.
Van Leer
,
B.
, 1974, “
Towards the Ultimate Conservative Difference Scheme II. Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
0021-9991
14
, pp.
361
370
.
15.
Hakkinen
,
R. J.
,
Greber
,
I.
,
Trilling
,
L.
, and
Abarbanel
,
S. S.
, 1959, “
The Interaction of an Oblique Shock Wave With a Laminar Boundary Layer
,” NASA Memo 2-18-59W.
16.
Katzer
,
E.
, 1989, “
On the Lengthscales of Laminar Shock Boundary-Layer Interaction
,”
J. Fluid Mech.
0022-1120
206
, pp.
477
496
.
17.
Pauley
,
L. L.
,
,
Moin
,
P.
, and
Reynolds
,
W. C.
, 1990, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
0022-1120
220
, pp.
397
411
.
18.
Wasistho
,
B.
,
Geurts
,
B. J.
, and
Kuerten
,
J. G. M.
, 1997, “
Numerical Simulation of Separated Boundary-Layer Flow
,”
J. Eng. Math.
0022-0833
32
, pp.
179
196
.
You do not currently have access to this content.