There are still many unanswered questions related to the problem of a capillary surface rising in a tube. One of the major questions is the evolution of the liquid meniscus shape. In this paper, a simple geometry method is proposed to solve the force balance equation on the liquid meniscus. Based on a proper model for the macroscopic dynamic contact angle, the evolution of the liquid meniscus, including the moving speed and the shape, is obtained. The wall condition of zero dynamic contact angle is allowed. The resulting slipping velocity at the contact line resolves the stress singularity successfully. Performance of the present method is examined through six well-documented capillary-rise examples. Good agreements between the predictions and the measurements are observable if a reliable model for the dynamic contact angle is available. Although only the capillary-rise problem is demonstrated in this paper, the concept of this method is equally applicable to free surface flow in the vicinity of a contact line where the capillary force dominates the flow.

1.
Hoffman
,
R. L.
, 1975, “
A Study of the Advancing Interface I. Interface Shape in Liquid-Gas Systems
,”
J. Colloid Interface Sci.
0021-9797,
50
, pp.
228
241
.
2.
Dussan
,
V. E. B.
, 1976, “
The Moving Contact Line: The Slip Boundary Condition
,”
J. Fluid Mech.
0022-1120,
77
, pp.
665
684
.
3.
Shikhmurzaev
,
Y. D.
, 1997, “
Moving Contact Lines in Liquid/Liquid/Solid Systems
,”
J. Fluid Mech.
0022-1120,
334
, pp.
211
249
.
4.
Cox
,
R. G.
, 1998, “
Inertial and Viscous Effects on Dynamic Contact Angle
,”
J. Fluid Mech.
0022-1120,
357
, pp.
249
278
.
5.
Lee
,
S. L.
, and
Sheu
,
S. R.
, 2001, “
A New Numerical Formulation for Incompressible Viscous Free Surface Flow Without Smearing the Free Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1837
1848
.
6.
Lowndes
,
J.
, 1980, “
The Numerical Simulation of the Steady Movement of a Fluid Meniscus in a Capillary Tube
,”
J. Fluid Mech.
0022-1120,
101
, pp.
631
646
.
7.
Zhou
,
M. Y.
, and
Sheng
,
P.
, 1990, “
Dynamics of Immiscible-Fluid Displacement in a Capillary Tube
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
882
885
.
8.
Sheng
,
P.
, and
Zhou
,
M. Y.
, 1992, “
Immiscible-Fluid Displacement: Contact-Line Dynamics and the Velocity-Dependent Capillary Pressure
,”
Phys. Rev. A
1050-2947,
45
, pp.
5694
5708
.
9.
Koplik
,
J.
,
Banavar
,
J. R.
, and
Willemsen
,
J. F.
, 1988, “
Molecular Dynamics of Poiseuille Flow and Moving Contact Angle
,”
Phys. Rev. Lett.
0031-9007,
60
, pp.
1282
1285
.
10.
Thompson
,
P. A.
, and
Robbins
,
M. O.
, 1989, “
Simulation of Contact-Line Motion: Slip and the Dynamic Contact Angle
,”
Phys. Rev. Lett.
0031-9007,
63
, pp.
766
769
.
11.
Martic
,
G.
,
Gentner
,
F.
,
Seveno
,
D.
,
Coulon
,
D.
,
De Coninck
,
J.
, and
Blake
,
T. D.
, 2002, “
A Molecular Dynamics Simulation of Capillary Imbibition
,”
Langmuir
0743-7463,
18
, pp.
7971
7976
.
12.
Kistler
,
S. F.
, 1993, “
Hydrodynamics of Wetting
,” in
Wettability
,
Berg
,
J. C.
, ed.,
Marcel Dekker
, New York, Chap. 6, pp.
311
429
.
13.
Hamraoui
,
A.
,
Thuresson
,
K.
,
Nylander
,
T.
, and
Yaminsky
,
V.
, 2000, “
Can a Dynamic Contact Angle be Understood in Terms of a Friction Coefficient?
,”
J. Colloid Interface Sci.
0021-9797,
226
, pp.
199
204
.
14.
Blake
,
T. D.
, and
Haynes
,
J. M.
, 1969, “
Kinetics of Liquid/Liquid Displacement
,”
J. Colloid Interface Sci.
0021-9797,
30
, pp.
421
423
.
15.
Sarpkaya
,
T.
, 1996, “
Vorticity, Free Surface and Surfactants
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
83
128
.
16.
Tsai
,
W. T.
, and
Yue
,
D. K. P.
, 1996, “
Computation of Nonlinear Free-Surface Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
249
278
.
17.
Sato
,
T.
, and
Richardson
,
S. M.
, 1995, “
Numerical Simulation of the Fountain Flow Problem for Viscoelastic Fluid
,”
Polym. Eng. Sci.
0032-3888,
35
, pp.
805
812
.
18.
Jiang
,
T. S.
,
Oh
,
S. G.
, and
Slattery
,
J. C.
, 1979, “
Correlation for Dynamic Contact Angle
,”
J. Colloid Interface Sci.
0021-9797,
69
, pp.
74
77
.
19.
Bracke
,
M.
,
de Voeght
,
F.
, and
Joos
,
P.
, 1989, “
The Kinetics of Wetting: The Dynamic Contact Angle
,”
Prog. Colloid Polym. Sci.
0340-255X,
79
, pp.
142
149
.
20.
Fan
,
H.
,
Gao
,
Y. X.
, and
Huang
,
X. Y.
, 2001, “
Thermodynamics Modeling for Moving Contact Line in Gas/Liquid/Solid System: Capillary Rise Problem Revisited
,”
Phys. Fluids
1070-6631,
13
, pp.
1615
1623
.
21.
Panchamgam
,
S. S.
,
Gokhale
,
S. J.
,
Plawsky
,
J. L.
,
DasGupta
,
S.
, and
Wayner
,
P. C.
, 2005, “
Experimental Determination of the Effect of Disjoining Pressure on Shear in the Contact Line Region of a Moving Evaporating Thin Film
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
231
243
.
22.
Blake
,
T. D.
, 1993, “
Dynamic Contact Angles and Wetting Kinetics
,” in
Wettability
,
Berg
,
J. C.
, ed.,
Marcel Dekker
, New York, Chap. 5, pp.
251
309
.
You do not currently have access to this content.