This paper presents a numerical analysis of the free surface liquid metal flow driven by an alternating current magnetic field in a spinning cylindrical container. The axisymmetric flow structure is analyzed for various values of the magnetohydrodynamic interaction parameter and Ekman numbers. The governing hydrodynamic equations are solved by a spectral collocation method, and the alternating magnetic field distribution is found by a boundary-integral method. The electromagnetic and hydrodynamic fields are fully coupled via the shape of the liquid free surface. It is found that the container rotation may reduce the meridional flow significantly.
Issue Section:
Fundamental Issues and Canonical Flows
1.
Lopez
, J. M.
, Marques
, F.
, Hirsa
, A. H.
, and Miraghaie
, R.
, 2004, “Symmetry Breaking in Free-Surface Cylinder Flows
,” J. Fluid Mech.
0022-1120, 502
, pp. 99
–126
.2.
Vatistas
, G. H.
, 1990, “A Note on Liquid Vortex Sloshing and Kelvin’s Equilibria
,” J. Fluid Mech.
0022-1120, 217
, pp. 241
–248
.3.
Suzuki
, T.
, Lima
, M.
, and Hayase
, Y.
, 2006, “Surface Switching of Rotating Fluid in a Cylinder
,” Phys. Fluids
1070-6631, 18
, 101701
.4.
Gelfgat
, A. Yu.
, Bar-Yoseph
, P. Z.
, and Solan
, A.
, 2001, “Three-Dimensional Instability of Axisymmetric Flow in a Rotating Lid-Cylinder Enclosure
,” J. Fluid Mech.
0022-1120, 438
, pp. 363
–377
.5.
Gelfgat
, Yu.
, Priede
, J.
, and Sorkin
, M. Z.
, 1991, “Numerical Simulation of MHD Flow Induced by Rotating Magnetic Field in Cylindrical Container of Finite Length
,” in Proceedings of the International Conference on Energy Transfer in MHD Flows
, Grenoble, France
, pp. 181
–186
.6.
Grants
, I.
, and Gerbeth
, G.
, 2002, “Linear Three-dimensional Instability of a Magnetically Driven Rotating Flow
,” J. Fluid Mech.
0022-1120, 463
, pp. 229
–240
.7.
Pedchenko
, A.
, and Grants
, I.
, 2005, “Instability of Rotating Magnetic Field Driven Flow in a Counter-Rotating Cylinder
,” Phys. Fluids
1070-6631, 17
, 104102
.8.
Shatrov
, V.
, Priede
, J.
, and Gerbeth
, G.
, 2006, “Basic Flow and its 3D Linear Stability in a Small Spherical Droplet Spinning in an Alternating Magnetic Field
,” Phys. Fluids
1070-6631, 19
, 078106
.9.
Filip
, O.
, Hermann
, R.
, Gerbeth
, G.
, Priede
, J.
, and Biswas
, K.
, 2005, “Controlling Melt Convection—An Innovative Potential for Concerted Microstructure Evolution of Nd-Fe-B Alloys
,” Mater. Sci. Eng., A
0921-5093, 413–414
, pp. 302
–305
.10.
Biswas
, K.
, Hermann
, R.
, Das
, J.
, Priede
, J.
, Gerbeth
, G.
, and Acker
, J.
, 2006, “Tailoring the Microstructure and Mechanical Properties of Ti-Al Alloy Using a Novel Electromagnetic Stirring Method
,” Scr. Mater.
1359-6462, 55
, pp. 1143
–1146
.11.
Priede
, J.
, and Gerbeth
, G.
, 2006, “Boundary-Integral Method for Calculating Poloidal Axisymmetric ac Magnetic Field
,” IEEE Trans. Magn.
0018-9464, 42
(2
), pp. 301
–308
.12.
Mestel
, A. J.
, 1982, “Magnetic Levitation of Liquid Metals
,” J. Fluid Mech.
0022-1120, 117
, pp. 27
–43
.13.
Gradshteyn
, I. S.
, and Ryzhik
, I. M.
, 2000, Tables of Integrals, Series and Products
, 6th ed., Academic
, New York
, p. 851
.14.
Meixner
, J.
, 1972, “The Behavior of Electromagnetic Fields at Edges
,” IEEE Trans. Antennas Propag.
0018-926X, AP-20
, pp. 442
–446
.15.
Yakovlev
, V. I.
, 1995, “On the Singularity of Alternating Electromagnetic Fields in the Vicinity of the Apex of a Conducting wedge
,” J. Appl. Mech. Tech. Phys.
0021-8944, 37
(4
), pp. 459
–463
.16.
Batchelor
, G. K.
, 1967, An Introduction to Fluid Dynamics
, Cambridge University Press
, Cambridge, UK
, pp. 149
–150
.17.
Tuckerman
, L. S.
, 1989, “Divergence-Free Velocity Fields in Nonperiodic Geometries
,” J. Comput. Phys.
0021-9991, 80
, pp. 403
–441
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.