Rotation and curvature (RC) effects on turbulence are expected to impact losses and flow structure in turbomachines. This paper examines two recent eddy-viscosity-model corrections devised to account for these effects: the Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302) correction to the model of Spalart and Allmaras (1994, “A One-Equation Turbulence Model for Aerodynamic Flows,” Rech. Aerosp., 1, pp. 5–21) and the correction of Cazalbou et al. (2005, “Two-Equation Modeling of Turbulent Rotating Flows,” Phys. Fluids., 17, p. 055110) to the (k,ϵ) model. The method of verification and validation is applied to assess the impact of these corrections on the computation of a centrifugal-compressor test case. First, a review of RC effects on turbulence as they apply to centrifugal compressors is made. The two corrected models are then presented. Second, the Radiver open test case (Ziegler K. U., Gallus, H. E., and Niehuis R., 2003, “A Study on Impeller Diffuser Interaction Part 1: Influence on the Performance,” ASME J. Turbomach, 125, pp. 173–182) is used as a basis for the assessment of the two corrections. After a physical-consistency analysis, the Richardson extrapolation is applied to quantify the numerical errors involved in all the calculations. Finally, experimental data are used to perform validation for both global and local predictions. The consistency analysis shows that both corrections lead to significant changes in the turbulent field, in perfect agreement with the underlying theoretical considerations. The uncertainty analysis shows that the predictions of the global performances are more sensitive to grid refinement than they are to RC turbulence modeling. However, the opposite conclusion is drawn with regard to the prediction of some local flow properties: Improvements are obtained with the RC corrections, the best results being observed for the RC-corrected (k,ϵ) model.

1.
Lakshminarayana
,
B.
, 1986, “
Turbulence Modeling for Complex Shear Flows
,”
AIAA J.
0001-1452,
24
(
12
), pp.
1900
1917
.
2.
Bradshaw
,
P.
, 1996, “
Turbulence Modeling With Application to Turbomachinery
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
575
624
.
3.
Tritton
,
D. J.
, 1992, “
Stabilization and Destabilization of Turbulent Shear Flow in a Rotating Fluid
,”
J. Fluid Mech.
0022-1120,
241
, pp.
503
523
.
4.
Bradshaw
,
P.
, 1973, “
Effects of Streamline Curvature on Turbulent Flows
,” AGARD, Agardograph No. 169.
5.
Baljé
,
O. E.
, 1981,
Turbomachines: A Guide to Design, Selection and Theory
,
Wiley
,
New York
.
6.
Moore
,
J.
, and
Moore
,
J. G.
, 1990, “
Effects of Curvature and Rotation on Turbulence in the NASA Low-Speed Centrifugal Compressor Impeller
,”
Proceedings of the Fourth Annual Review Meeting of the Center for Turbomachinery and Propulsion Research
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
7.
Spalart
,
P. R.
, and
Shur
,
M. L.
, 1997, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
1270-9638,
1
(
5
), pp.
297
302
.
8.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
9.
Cazalbou
,
J.-B.
,
Chassaing
,
P.
,
Dufour
,
G.
, and
Carbonneau
,
X.
, 2005, “
Two-Equation Modeling of Turbulent Rotating Flows
,”
Phys. Fluids
1070-6631,
17
, pp.
055110
.
10.
Yang
,
Z.
, and
Shih
,
T. H.
, 1993, “
A k,ϵ Model for Turbulent and Transitional Boundary Layers
,” in
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.
Elsevier Science
,
New York
.
11.
Johnston
,
J. P.
, 1998, “
Effects of System Rotation on Turbulence Structure: A Review Relevant to Turbomachinery Flows
,”
Int. J. Rotating Mach.
1023-621X,
4
(
2
), pp.
97
112
.
12.
Rogallo
,
R. S.
, 1981, “
Numerical Experiment in Homogeneous Turbulence
,” NASA Technical Report No. TM 81315.
13.
Hirsch
,
C.
,
Lacor
,
C.
,
Dener
,
C.
, and
Vucinic
,
D.
, 1991, “
An Integrated CFD System for 3D Turbomachinery Applications
,” AGARD-CP-510.
14.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
, 2003, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” in
Turbulence, Heat and Mass Transfer
,
K.
Hanjalić
,
Y.
Nagano
, and
M.
Tummers
,
Begell House
,
New York
, Vol.
4
.
15.
Ziegler
,
K. U.
, 2003, “
Experimentelle Untersuchung der Laufrad-Diffusor-Interaktion in einem Radialverdichter Variabler Geometrie
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany, in German.
16.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
, 2003, “
A Study on Impeller Diffuser Interaction. Part I: Influence on the Performance
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
173
182
.
17.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
, 2003, “
A Study on Impeller Diffuser Interaction. Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
183
192
.
18.
Weiß
,
C.
,
Grates
,
D. R.
,
Thermann
,
H.
, and
Niehuis
,
R.
, 2003, “
Numerical Investigation of the Influence of the Tip Clearance on the Wake Formation Inside a Radial Impeller
,”
Proceedings of the ASME Turbo Expo 2003
, Paper No. GT2003-38279.
19.
Boncinelli
,
P.
,
Ermini
,
M.
,
Bartolacci
,
S.
, and
Arnone
,
A.
, 2007, “
Impeller-Diffuser Interaction in Centrifugal Compressors: Numerical Analysis of the “Radiver” Test Case
,”
J. Propul. Power
0748-4658,
23
(
6
), pp.
1304
1312
.
20.
Boncinelli
,
P.
,
Ermini
,
M.
,
Bartolacci
,
S.
, and
Arnone
,
A.
, 2007, “
On Effects of Impeller-Diffuser Interaction in the “Radiver” Centrifugal Compressor
,”
Proceedings of the ASME Turbo Expo 2007
,
Canada
, Paper No. GT2007-27384.
21.
Stern
,
F.
,
Wilson
,
R.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
, 2001, “
Verification and Validation of CFD Simulations: Part 1-Comprehensive Methodology
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
793
802
.
22.
Dufour
,
G.
,
Carbonneau
,
X.
,
Arbez
,
P.
,
Cazalbou
,
J.-B.
, and
Chassaing
,
P.
, 2004, “
Mesh-Generation Parameters Influence on Centrifugal-Compressor Simulation for Design Optimization
,”
Proceedings of the 2004 ASME Heat Transfer/Fluids Engineering Summer Conference
,
Charlotte
, Paper No. HT-FED2004-56314.
23.
Dufour
,
G.
,
Carbonneau
,
X.
,
Arbez
,
P.
,
Cazalbou
,
J.-B.
, and
Chassaing
,
P.
, 2004, “
Numerical-Error Evaluation for Tip-Clearance-Flow Calculations in a Centrifugal Compressor
,”
Proceedings of the XXI ICTAM Conference
,
Poland
, Paper No. 12510.
24.
Celik
,
I. B.
, and
Li
,
J.
, 2005, “
Assessment of Numerical Uncertainty for the Calculations of Turbulent Flow Over a Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
49
, pp.
1015
1031
.
25.
Huang
,
P. J.
, 1997, “
Validation of Turbulence Models—Uncertainties and Measures to Reduce Them
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
,
Vancouver, Canada
, Paper No. FEDSM97-3121.
26.
Coleman
,
H. W.
, and
Stern
,
F.
, 1997, “
Uncertainties in CFD Code Validation
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
795
803
.
27.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
, 2006, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
0021-9991,
217
, pp.
5
36
.
28.
Coleman
,
H. W.
, 2003, “
Some Observations on Uncertainties and the Verification and Validation of a Simulation
,”
ASME Trans. J. Fluids Eng.
0098-2202,
125
, pp.
733
735
.
You do not currently have access to this content.