Flow maldistribution, resulting from bubbles or other particulate matter, can lead to drastic performance degradation in devices that employ parallel microchannels for heat transfer. In this work, direct numerical simulations of fluid flow through a prescribed parallel microchannel geometry are performed and coupled with active control of actuated microvalves to effectively identify and reduce flow maldistribution. Accurate simulation of fluid flow through a set of three parallel microchannels is achieved utilizing a fictitious-domain representation of immersed objects such as microvalves and artificially introduced bubbles. Flow simulations are validated against experimental results obtained for flow through a single high-aspect ratio microchannel, flow around an oscillating cylinder, and flow with a bubble rising in an inclined channel. Results of these simulations compare very well to those obtained experimentally, and validate the use of the solver for the parallel microchannel configuration of this study. System identification techniques are employed on numerical simulations of fluid flow through the geometry to produce a lower dimensional model that captures the essential dynamics of the full nonlinear flow, in terms of a relationship between valve angles and the exit flow rate for each channel. A model-predictive controller is developed, which employs this reduced order model to identify flow maldistribution from exit flow velocities and to prescribe actuation of channel valves to effectively redistribute the flow. Flow simulations with active control are subsequently conducted with artificially introduced bubbles. The model-predictive control methodology is shown to adequately reduce flow maldistribution by quickly varying channel valves to remove bubbles and to equalize flow rates in each channel.

1.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2755
2771
.
2.
Triplett
,
K.
,
Ghiaasiaan
,
S.
,
Abdel-Khalik
,
S.
, and
Sadowski
,
D.
, 1999, “
Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
0301-9322,
25
(
3
), pp.
377
394
.
3.
Cubaud
,
T.
, 2004, “
Transport of Bubbles in Square Microchannels
,”
Phys. Fluids
1070-6631,
16
(
12
), pp.
4575
4585
.
4.
Sharp
,
K.
, and
Adrian
,
R.
, 2005, “
On Flow-Blocking Particle Structures in Microtubes
,”
Microfluid. Nanofluid.
1613-4982,
1
(
4
), pp.
376
380
.
5.
Wang
,
E.
,
Shankar
,
D.
,
Hidroo
,
D.
,
Fogg
,
C. H.
,
Koo
,
J.
,
Santiago
,
J.
,
Goodson
,
K.
, and
Kenny
,
T.
, 2004, “
Liquid Velocity Field Measurements in Two-Phase Microchannel Convection
,”
Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation
, Pisa, Italy.
6.
Lee
,
P.
,
Tseng
,
F.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
25
), pp.
5575
5589
.
7.
Li
,
H.
,
Tseng
,
F.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part II: Two Parallel Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
25
), pp.
5591
5601
.
8.
Mukherjee
,
A.
, and
Kandlikar
,
S.
, 2005, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Proceedings of the ICMM05, Third International Conference on Microchannels and Minichannels
, Toronto, Canada, Vol.
75143
.
9.
Bleris
,
L.
,
Garcia
,
J.
,
Arnold
,
M.
, and
Kothare
,
M.
, 2006, “
Model Predictive Hydrodynamic Regulation of Microflows
,”
J. Micromech. Microeng.
0960-1317,
16
(
9
), pp.
1792
1799
.
10.
Glowinski
,
R.
,
Pan
,
T.
,
Hesla
,
T.
,
Joseph
,
D.
, and
Periaux
,
J.
, 2001, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies-Application to Particulate Flow
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
363
426
.
11.
Patankar
,
N.
, 2001, “
A Formulation for Fast Computations of Rigid Particulate Flows
,” Center for Turbulence Research Annual Research Briefs 2001, pp.
185
196
.
12.
Apte
,
S. V.
,
Martin
,
M.
, and
Patankar
,
N.
, 2009, “
A Numerical Method for Fully Resolved Simulation (FRS) of Rigid Particle-Flow Interactions in Complex Flows
,”
J. Comput. Phys.
0021-9991,
228
(
8
), pp.
2712
2738
.
13.
Patankar
,
N.
,
Singh
,
P.
,
Joseph
,
D.
,
Glowinski
,
R.
, and
Pan
,
T.
, 2000, “
A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
0301-9322,
26
(
9
), pp.
1509
1524
.
14.
Sharma
,
N.
, and
Patankar
,
N.
, 2005, “
A Fast Computation Technique for the Direct Numerical Simulation of Rigid Particulate Flows
,”
J. Comput. Phys.
0021-9991,
205
(
2
), pp.
439
457
.
15.
Kim
,
D.
, and
Choi
,
H.
, 2000, “
A Second-Order Time-Accurate Finite Volume Method for Unsteady Incompressible Flow on Hybrid Unstructured Grids
,”
J. Comput. Phys.
0021-9991,
162
(
2
), pp.
411
428
.
16.
Mahesh
,
K.
,
Constantinescu
,
G.
,
Apte
,
S.
,
Iaccarino
,
G.
,
Ham
,
F.
, and
Moin
,
P.
, 2006, “
Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
374
381
.
17.
Roma
,
A.
,
Peskin
,
C.
, and
Berger
,
M.
, 1999, “
An Adaptive Version of the Immersed Boundary Method
,”
J. Comput. Phys.
0021-9991,
153
(
2
), pp.
509
534
.
18.
Ferziger
,
J.
, and
Perić
,
M.
, 2002,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
19.
van der Vorst
,
H.
, 2003,
Iterative Krylov Methods for Large Linear Systems
,
Cambridge University Press
,
Cambridge, England
.
20.
Ham
,
F.
, and
Young
,
Y.
, 2003, “
A Cartesian Adaptive Level Set Method for Two-Phase Flows
,” Center for Turbulence Research Annual Research Briefs, pp.
227
237
.
21.
Leung
,
L.
, 1999,
System Identification-Theory for the User
,
Prentice- Hall
,
Englewood Cliffs, NJ
.
22.
Zhu
,
Y.
, 2001,
Multivariable System Identification for Process Control
,
Elsevier
,
New York
.
23.
Camacho
,
E.
, and
Bordons
,
C.
, 2004,
Model Predictive Control
,
Springer-Verlag
,
Berlin
.
24.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S.
, and
Wereley
,
S.
, 2006, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
1
9
.
25.
Dütsch
,
H.
,
Durst
,
F.
,
Becker
,
S.
, and
Lienhart
,
H.
, 1998, “
Low-Reynolds-Number Flow Around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers
,”
J. Fluid Mech.
0022-1120,
360
, pp.
249
271
.
26.
Lomholt
,
S.
,
Stenum
,
B.
, and
Maxey
,
M.
, 2002, “
Experimental Verification of the Force Coupling Method for Particulate Flows
,”
Int. J. Multiphase Flow
0301-9322,
28
(
2
), pp.
225
246
.
27.
Kim
,
D.
, and
Choi
,
H.
, 2006, “
Immersed Boundary Method for Flow Around an Arbitrarily Moving Body
,”
J. Comput. Phys.
0021-9991,
212
(
2
), pp.
662
680
.
28.
Mordant
,
N.
, and
Pinton
,
J.
, 2000, “
Velocity Measurement of a Settling Sphere
,”
Eur. Phys. J. B
1434-6028,
18
(
2
), pp.
343
352
.
29.
Finn
,
J.
, 2009, “
A Multiscale Modeling Approach for Bubble-Vortex Interactions in Hydropropulsion Systems
,” MS thesis, Oregon State University, Corvallis, OR.
30.
Shridhar
,
R.
, and
Cooper
,
D.
, 1998, “
A Tuning Strategy for Unconstrained Multivariable Model Predictive Control
,”
Ind. Eng. Chem. Res.
0888-5885,
37
, pp.
4003
4016
.
31.
Koumoutsakos
,
P.
, 2005, “
Multiscale Flow Simulations Using Particles
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
(
1
), pp.
457
487
.
32.
Peskin
,
C.
, 2003, “
The Immersed Boundary Method
,”
Acta Numerica
0962-4929,
11
, pp.
479
517
.
You do not currently have access to this content.