Separated flow past a hump in a turbulent boundary layer is studied numerically using detached-eddy simulation (DES), zonal detached-eddy simulation (ZDES), delayed detached-eddy simulation (DDES), and Reynolds-averaged Navier–Stokes (RANS) modeling. The geometry is smooth so the separation point is a function of the flow solution. Comparisons to experimental data show that RANS with the Spalart–Allmaras turbulence model predicts the mean-field statistics well. The ZDES and DDES methods perform better than the DES formulation and are comparable to RANS in most statistics. Analyses motivate that modeled-stress depletion near the separation point contributes to differences observed in the DES variants. The order of accuracy of the flow solver ACUSOLVE is also documented.

1.
Spalart
,
P.
,
Jou
,
W. -H.
, and
Allmaras
,
S.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES: First AFOSR International Conference on DNS/LES
,
C.
Liu
and
Z.
Liu
, eds.,
Greyden
.
2.
Strelets
,
M.
, 2001, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, AIAA Paper No. 2001-0879.
3.
Paterson
,
E. G.
, and
Peltier
,
L. J.
, 2005, “
Detached-Eddy Simulation of High-Reynolds-Number Beveled-Trailing-Edge Boundary Layers and Wakes
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
897
906
.
4.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. Kh.
, and
Travin
,
A.
, 2006, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
0935-4964,
20
, pp.
181
195
.
5.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
, 2003, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,” AIAA Paper No. 2003-0767.
6.
Slimon
,
S.
, 2003, “
Computation Of Internal Separated Flows Using a Zonal Detached Eddy Simulation Approach
,
Proceedings of the 2003 ASME International Mechanical Engineering Congress
.
7.
Seifert
,
L. G. P.
, 2002, “
Active Flow Separation Control on Wall Mounted Hump at High Reynolds Number
,”
AIAA J.
0001-1452,
40
(
7
), pp.
1363
1372
.
8.
Rumsey
,
C. L.
,
Gatski
,
T. B.
,
Sellers
,
W. L.
,
Vatsa
,
V. N.
, and
Viken
,
S. A.
, 2004, “
Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control
,” AIAA Paper No. 2004-2217.
9.
Krishnan
,
V.
,
Squires
,
K. D.
, and
Forsythe
,
J. R.
, 2004. “
Prediction of Separated Flow Characteristic Over a Hump Using RANS and DES
,”
Second AIAA Flow Control Conference
, Portland, OR.
10.
Biswas
,
D.
, 2006, “
Studies on Separation Control CFD Validation Test Case Based on a Higher Order LES Model
,”
Third AIAA Flow Control Conference
, San Francisco, CA.
11.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C.
,
Harris
,
J.
,
Schaeffler
,
N. W.
, and
Washburn
,
A. E.
, 2004. “
A Separation Control CFD Validation Test Case Part 1: Baseline & Steady Suction
,”
Second AIAA Flow Control Conference
, Portland, OR.
12.
Naughton
,
J. W.
,
Viken
,
S.
, and
Greenblatt
,
D.
, 2004. “
Wall Shear Stress Measurements on the NASA Hump Model for CFD Validation
,”
24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
, Portland OR.
13.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT
,
Cambridge, MA
.
14.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
(
5
), pp.
5
21
.
15.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
An Application of Fractional Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
16.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
(
4
), pp.
943
945
.
17.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations. Part I: The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
You do not currently have access to this content.