The ability of eddy-viscosity models to simulate the turbulent wake produced by cross-flow separation over a curved body of revolution is assessed. The results obtained using the standard kω model show excessive levels of turbulent kinetic energy k in the vicinity of the stagnation point at the nose of the body. Additionally, high levels of k are observed throughout the wake. Enforcing laminar flow upstream of the nose (which replicates the experimental apparatus more accurately) gives more accurate estimates of k throughout the flowfield. A stress limiter in the form of Durbin’s T-limit modification for eddy-viscosity models is implemented for the kω model, and its effect on the computed surface pressures, skin friction, and surface flow features is assessed. Additionally, the effect of the T-limit modification on both the mean flow and the turbulent flow quantities within the wake is also examined. The use of the T-limit modification gives significant improvements in predicted levels of turbulent kinetic energy and Reynolds stresses within the wake. However, predicted values of skin friction in regions of attached flow become up to 50% greater than the experimental values when the T-limit is used. This is due to higher values of near-wall turbulence being created with the T-limit.

1.
Degani
,
C.
, and
Schiff
,
L. B.
, 1983, “
Computation of Supersonic Viscous Flows around Pointed Bodies at Large Incidence
,”
AIAA 21st Aerospace Sciences Meeting
, Paper No. AIAA-1983-004.
2.
Vatsa
,
V.
, 1991, “
Viscous Flow Solutions for Slender Bodies of Revolution at Incidence
,”
Comput. Fluids
0045-7930,
20
, pp.
313
320
.
3.
Newsome
,
R. W.
, and
Adams
,
M. S.
, 1986, “
Numerical Simulation of Vortical Flow Over an Elliptical-Body Missile at High Angles of Attack
,”
AIAA 24th Aerospace Sciences Meeting
, Paper No. AIAA-1986-0559.
4.
Murman
,
S. M.
, and
Chaderjian
,
N. M.
, 1998, “
Application of Turbulence Models to Separated High-Angle-of-Attack Flows
,”
AIAA Atmospheric Flight Mechanics Conference and Exhibit
, Paper No. AIAA-1998-4519.
5.
Meier
,
H. U.
, and
Kreplin
,
H. -P.
, 1990, “
Description of the DFVLR Prolate Spheroid and Its Instrumentation
,”
Calculation of 3D Separate Turbulent Flows in Boundary Layer Limit
,
AGARD
,
Neuilly sur Seine, France
.
6.
Ahn
,
S.
, 1992,
An Experimental Study of Flow Over a 6 to 1 Prolate Spheroid at Incidence
,
Virginia Polytechnic Institute and State University
,
Blacksburg
.
7.
Chesnakas
,
C. J.
, and
Simpson
,
R. L.
, 1994, “
Full Three-Dimensional Measurements of the Cross-Flow Separation Region of a 6:1 Prolate Spheroid
,”
Exp. Fluids
0723-4864,
17
, pp.
68
74
.
8.
Chesnakas
,
C. J.
, and
Simpson
,
R. L.
, 1996, “
Measurements of the Turbulence Structure in the Vicinity of a 3-D Separation
,”
ASME J. Fluids Eng.
0098-2202,
118
(
2
), pp.
268
275
.
9.
Chesnakas
,
C. J.
, and
Simpson
,
R. L.
, 1997, “
Detailed Investigation of the Three-Dimensional Separation About a 6:1 Prolate Spheroid
,”
AIAA J.
0001-1452,
35
(
6
), pp.
990
999
.
10.
Hoang
,
N. T.
,
Wetzel
,
T. G.
, and
Simpson
,
R. L.
, 1994, “
Surface Pressure Measurements Over a 6:1 Prolate Spheroid Undergoing Time-Dependent Maneuvers
,”
AIAA 12th Applied Aerodynamics Conference
, Colorado Springs, pp.
751
763
.
11.
Goody
,
M.
,
Simpson
,
R. L.
,
Engel
,
M.
,
Chesnakas
,
C.
, and
Devenport
,
W.
, 1998, “
Mean Velocity and Pressure and Velocity Spectral Measurements Within a Separated Flow Around a Prolate Spheroid at Incidence
,”
AIAA 36th Aerospace Sciences Meeting and Exhibit
, Reno, Paper No. AIAA-1998-0630.
12.
Wetzel
,
T. G.
,
Simpson
,
R. L.
, and
Chesnakas
,
C. J.
, 1998, “
Measurement of Three-Dimensional Crossflow Separation
,”
AIAA J.
0001-1452,
36
(
4
), pp.
557
564
.
13.
Gee
,
K.
,
Cummings
,
R. M.
, and
Schiff
,
L. B.
, 1992, “
Turbulence Model Effects on Separated Flow About a Prolate Spheroid
,”
AIAA J.
0001-1452,
30
(
3
), pp.
655
664
.
14.
Taylor
,
L. K.
,
Arabshahi
,
A.
, and
Whitfield
,
D. L.
, 1995, “
Unsteady Three-Dimensional Incompressible Navier-Stokes Computations for a Prolate Spheroid Undergoing Time-Dependent Maneuvers
,”
AIAA 33rd Aerospace Sciences Meeting and Exhibit
, Reno.
15.
Tsai
,
C. -Y.
, and
Whitney
,
A. K.
, 1999, “
Numerical Study of Three-Dimensional Flow Separation for a 6:1 Ellipsoid
,”
AIAA 37th Aerospace Sciences Meeting and Exhibit
, Reno, Paper No. AIAA-1999-0172.
16.
Murman
,
S. M.
, 2001, “
Vortex Filtering for Turbulence Models Applied to Crossflow Separation
,” January, Paper No. AIAA-2001-0114.
17.
Constantinescu
,
G. S.
,
Pasinato
,
H.
,
Wange
,
Y. -Q.
, and
Squires
,
K. D.
, 2002, “
Numerical Investigation of Flow Past a Prolate Spheroid
,”
AIAA 40th Aerospace Sciences Meeting and Exhibit
, Reno, Paper No. AIAA-2002-0588.
18.
Morrison
,
J. H.
,
Panaras
,
A. G.
,
Gatski
,
T. B.
, and
Georgantopoulos
,
G. A.
, 2003, “
Analysis of Extensive Cross-Flow Separation Using Higher-Order RANS Closure Models
,”
AIAA 21st Applied Aerodynamics Conference
, Orlando, Paper No. AIAA-2003-3532.
19.
Kim
,
S. -E.
,
Rhee
,
S. H.
, and
Cokljat
,
D.
, 2003, “
Application of Modern Turbulence Models to Vortical Flow Around a 6:1 Prolate Spheroid at Incidence
,”
AIAA 41st Aerospace Sciences Meeting and Exhibit
, Reno, Paper No. AIAA-2003-0429.
20.
Sung
,
C. -H.
,
Fu
,
T. -C.
,
Griffen
,
M.
, and
Huag
,
T.
, 1997, “
Validation of Incompressible Flow Computation of Forces and Moments an Axisymmetric Bodies Undergoing Constant Radius Turning
,”
21st Symposium on Naval Hydrodynamics
, Trondheim.
21.
Roddy
,
R. F.
, 1990,
Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA Suboff Model From Captive Model Experiments
,
David Taylor Research Center
,
Bethesda
.
22.
Huang
,
T.
,
Liu
,
H. -L.
,
Groves
,
N.
,
Forlini
,
T.
,
Blanton
,
J.
, and
Gowing
,
S.
, 1992, “
Measurements of Flows Over an Axisymmetric Body With Various Appendages in a Wind Tunnel: The DARPA Suboff Experimental Program
,”
19th Symposium on Naval Hydrodynamics
, Seoul.
23.
Gurzhienko
,
G. A.
, 1934, “
Metod iskrivlenykh modelei primenenie ego k izucheniu krivolineinogo noleta vozdushnykh korablie (The Method of Deformed Bodies and Its Use in the Study of Curved Flights of Airships)
,” No. 182, Trudy TsAGI, Moscow, Translated and reprinted in English as NACA TM 829 and 830, 1937.
24.
Chang
,
M. S.
, and
Purtell
,
L. P.
, 1986, “
Three-Dimensional Flow Separation and the Effect of Appendage
,”
16th Symposium on Naval Hydrodynamics
, Berkeley.
25.
Gregory
,
P. A.
,
Joubert
,
P. N.
, and
Chong
,
M. S.
, 2004, “
The Use of Curved Bodies in a Wind Tunnel to Model Bodies in a Steady Turn
,”
The Tenth Asian Congress of Fluid Mechanics
, University of Peradeniya.
26.
Gregory
,
P. A.
, 2006,
Flow Over a Body of Revolution in a Steady Turn
,
University of Melbourne
,
Melbourne
.
27.
Gregory
,
P. A.
,
Joubert
,
P. N.
, and
Chong
,
M. S.
, 2007, “
Measurements of Turbulent Crossflow Separation Created by a Curved Body of Revolution
,”
J. Fluid Mech.
0022-1120,
589
, pp.
353
374
.
28.
Durbin
,
P. A.
, 1996, “
On the k−ε Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
89
90
.
29.
Medic
,
G.
, and
Durbin
,
P. A.
, 2002, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
124
(
2
), pp.
187
.
30.
Medic
,
G.
, and
Durbin
,
P. A.
, 2002, “
Toward Improved Film Cooling Prediction
,”
ASME J. Turbomach.
0889-504X,
124
(
2
), pp.
193
.
31.
Moore
,
J. G.
, and
Moore
,
J.
, 1999, “
Realizabilty in Two-Equation Turbulence Models
,”
AIAA 30th Fluid Dynamics Conference
, Norfolk, Paper No. AIAA-1999-33729.
32.
Wilcox
,
D. C.
, 2008, “
Formulation of the k−ω Turbulence Model Revisited
,”
AIAA J.
0001-1452,
46
(
11
), pp.
2823
2838
.
33.
Hornung
,
H. G.
, and
Perry
,
A. E.
, 1984, “
Some Aspects of Three-Dimensional Separation, Part I: Streamsurface Bifurcations
,”
Z. Flugwiss. Weltraumforsch.
0342-068X,
8
, pp.
77
87
.
You do not currently have access to this content.